Calculus with Applications (10th Edition)

Published by Pearson
ISBN 10: 0321749006
ISBN 13: 978-0-32174-900-0

Chapter 5 - Graphs and the Derivative - 5.2 Relative Extrema - 5.2 Exercises - Page 272: 30

Answer

$$ f(x) =3 x e^{x}+2 $$ (*) A relative minimum occurs at $x=-1,$ and the value of the function $f$ at this value is given by: $$ \begin{aligned} f(-1) &=3 (-1) e^{(-1)}+2\\ &=-\frac{3}{e}+2 \\ & \approx 0.896 \end{aligned} $$

Work Step by Step

$$ f(x) =3 x e^{x}+2 $$ To find the intervals where the function is increasing and decreasing. First, we find $f^{\prime}(x) $, $$ \begin{aligned} f^{\prime}(x) &=3 x e^{x}+3 e^{x} \\ &=3 e^{x}(x+1) \end{aligned} $$ To find the critical numbers, we first find any values of $x$ that make $f^{\prime} =0 $. Now, solve the equation $f^{\prime} =0 $ to get $$ \begin{aligned} f^{\prime}(x) =3 e^{x}(x+1)&=0\\ \Rightarrow\quad\quad\quad\quad\quad\\ e^{x}(x+1) &=0\\ \Rightarrow\quad\quad\quad\quad\quad\\ (x+1)=0 & \quad \quad or \quad \quad e^{x} =0 \\ x=-1 & \quad \quad \text {since } e^{x} \text {never equal zero} .\\ \end{aligned} $$ So The only critical number is: $x =-1 $ . We can still apply the first derivative test, however, to find where $f$ is increasing and decreasing. Now, check the sign of $f^{\prime}(x)$. in the intervals $$ (-\infty, -1 ), \quad\quad (-1 ,\infty ) . $$ (1) Test a number in the interval $(-\infty, -1 )$ say $-2$: $$ \begin{aligned} f^{\prime}(-2) &=3 e^{(-2)}((-2)+1)\\ &=-\frac{3}{e^2} \\ &\approx-0.406\\ &\lt 0 \end{aligned} $$ we see that $f^{\prime}(x)$ is negative in that interval, so $f(x)$ is decreasing on $(-\infty ,-1 )$. (2) Test a number in the interval $(-1, \infty )$ say $0 $: $$ \begin{aligned} f^{\prime}(0) &=3 e^{(0)}((0)+1)\\ &=3\\ &\gt 0 \end{aligned} $$ we see that $f^{\prime}(x)$ is positive in that interval, so $f(x)$ is increasing on $(-1, \infty )$. From (1), (2) we find that: (*) The function $f$ is decreasing on interval $ ( -\infty , -1) , $ and it is increasing on interval $ (-1 ,\infty ) . $ So, a relative minimum occurs at $x=-1,$ and the value of the function $f$ at this value is given by: $$ \begin{aligned} f(-1) &=3 (-1) e^{(-1)}+2\\ &=-\frac{3}{e}+2 \\ & \approx 0.896 \end{aligned} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.