Calculus with Applications (10th Edition)

Published by Pearson
ISBN 10: 0321749006
ISBN 13: 978-0-32174-900-0

Chapter 5 - Graphs and the Derivative - 5.2 Relative Extrema - 5.2 Exercises - Page 272: 24

Answer

$$ f(x) =3 x^{\frac{5}{3}}-15 x^{2 / 3} $$ (*) A relative maximum occurs at $x=0,$ and the value of the function $f$ at this value is given by: $$ f(0) =0, $$ (**) A relative minimum occurs at $x=2,$ and the value of the function $f$ at this value is given by: $$ f(2) =-9\cdot \:2^{\frac{2}{3}} \approx -14.2866 $$

Work Step by Step

$$ f(x) =3 x^{\frac{5}{3}}-15 x^{2 / 3} $$ To find the intervals where the function is increasing and decreasing. First, we find $f^{\prime}(x) $, $$ \begin{aligned} f^{\prime}(x) &=3(\frac{5}{3}) x^{\frac{2}{3}}-15 (2 / 3) x^{-1 / 3}\\ &=5 x^{\frac{2}{3}}-10 x^{-1 / 3}\\ &=5 x^{\frac{-1}{3}}[x-2 ]\\ &=\frac{5(x-2)}{x^{\frac{1}{3}}} \end{aligned} $$ To find the critical numbers, we first find any values of $x$ that make $f^{\prime} =0 $. Now, solve the equation $f^{\prime} =0 $ to get $$ \begin{aligned} f^{\prime}(x) =\frac{5(x-2)}{x^{\frac{1}{3}}} &=0\\ \Rightarrow\quad\quad\quad\quad\quad\\ (x-2) &=0\\ \Rightarrow\quad\quad\quad\quad\quad\\ x&=2 \end{aligned} $$ Next, we find any values of $x$ where $f^{\prime}(x) $ fails to exist. This occurs whenever the denominator of $f^{\prime}(x) $ is $0$, here we observe that the denominator $x^{\frac{1}{3}}$ equal to 0, when $x=0$ So, The critical numbers : $x=2 $ and $x=0$ . We can still apply the first derivative test, however, to find where $f$ is increasing and decreasing. Now, check the sign of $f^{\prime}(x)$. in the intervals $$ (-\infty, 0), \quad (0 ,2 ) \quad \text {and }\quad ( 2 , \infty) . $$ (1) Test a number in the interval $(-\infty, 0) $ say $-1 $: $$ \begin{aligned} f^{\prime}(-1) &=\frac{5((-1)-2)}{(-1)^{\frac{1}{3}}} \\ &=15\\ & \gt 0 \end{aligned} $$ we see that $f^{\prime}(x)$ is positive in that interval, so $f(x)$ is increasing on $(-\infty , 0) $. (2) Test a number in the interval $( 0, 2) $ say $ 1$: $$ \begin{aligned} f^{\prime}(1) &=\frac{5((1)-2)}{(1)^{\frac{1}{3}}} \\ &=-5\\ &\lt 0 \end{aligned} $$ we see that $f^{\prime}(x)$ is negative in that interval, so $f(x)$ is decreasing on $(0 , 2) $. (3) Test a number in the interval $(2, \infty) $ say $3 $: $$ \begin{aligned} f^{\prime}(3) &=\frac{5((3)-2)}{(3)^{\frac{1}{3}}} \\ &=\frac{5}{3^{\frac{1}{3}}}\\ &\approx 3.4668\\ & \gt 0 \end{aligned} $$ we see that $f^{\prime}(x)$ is positive in that interval, so $f(x)$ is increasing on $(2 , \infty) $. From (1), (2) and (3) we find that: (*) The function $f$ is increasing on interval $ ( -\infty , 0) , $ and is decreasing on interval $ (0 ,2 ) . $ So, a relative maximum occurs at $x=0,$ and the value of the function $f$ at this value is given by: $$ \begin{aligned} f(0) &=3 (0)^{\frac{5}{3}}-15 (0)^{2 / 3}\\ &=0. \\ \end{aligned} $$ (**) The function $f$ is decreasing on interval $ (0 ,2 ), $ and is increasing on interval $ ( 2 , \infty). $ So, a relative minimum occurs at $x=2,$ and the value of the function $f$ at this value is given by: $$ \begin{aligned} f(2) &=3 (2)^{\frac{5}{3}}-15 (2)^{2 / 3} \\ &=-9\cdot \:2^{\frac{2}{3}} \\ &\approx -14.2866 \end{aligned} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.