Calculus with Applications (10th Edition)

Published by Pearson
ISBN 10: 0321749006
ISBN 13: 978-0-32174-900-0

Chapter 5 - Graphs and the Derivative - 5.2 Relative Extrema - 5.2 Exercises - Page 272: 22

Answer

$$ f(x) =\frac{(5-9 x)^{2 / 3}}{7}+1 $$ A relative minimum occurs at $x=\frac{5}{9},$ and we find that: $$ \begin{aligned} f(\frac{5}{9}) &=1. \\ \end{aligned} $$

Work Step by Step

$$ f(x) =\frac{(5-9 x)^{2 / 3}}{7}+1 $$ To find the intervals where the function is increasing and decreasing. First, we find $f^{\prime}(x) $, $$ \begin{aligned} f^{\prime}(x) &=\left(\frac{2}{3}\right) \frac{(5-9 x)^{-1 / 3}}{7}(-9) \\ &=-\frac{6}{7(5-9 x)^{1 / 3}} \end{aligned} $$ To find the critical numbers, we find any values of $x$ where $f^{\prime}(x) $ fails to exist. This occurs whenever the denominator of $f^{\prime}(x) $ is $0$, here we observe that the denominator $7(5-9 x)^{1 / 3}$ equal to 0, when $x=\frac{5}{9}$. So, the only critical number is $x=\frac{5}{9} $ . We can still apply the first derivative test, however, to find where $f$ is increasing or decreasing. Now, check the sign of $f^{\prime}(x)$ in the intervals $$ (-\infty, \frac{5}{9} ), \quad (\frac{5}{9} , \infty ) . $$ (1) Test a number in the interval $(-\infty, \frac{5}{9}) $ say $0 $: $$ \begin{aligned} f^{\prime}(0) &=-\frac{6}{7(5-9 (0))^{1 / 3}} \\ &=-\frac{6\cdot \:5^{\frac{2}{3}}}{35}\\ &\approx -0.50126 & \lt 0 \end{aligned} $$ we see that $f^{\prime}(x)$ is negative in that interval, so $f(x)$ is decreasing on $(-\infty , \frac{5}{9}) $. (2) Test a number in the interval $( \frac{5}{9} , \infty) $ say $ 1$: $$ \begin{aligned} f^{\prime}(1) &=-\frac{6}{7(5-9 (1))^{1 / 3}} \\ &=\frac{3\cdot \:2^{\frac{1}{3}}}{7}\\ &\approx 0.53996 & \gt 0 \end{aligned} $$ we see that $f^{\prime}(x)$ is positive in that interval, so $f(x)$ is increasing on $( \frac{5}{9} , \infty )$. From (1), (2) we find that: The function $f$ is decreasing on interval $ ( -\infty , \frac{5}{9} ) , $ and is increasing on interval $ ( \frac{5}{9} , \infty ) . $ So, a relative minimum occurs at $x=\frac{5}{9},$ and the value of the function $f$ at this value is given by: $$ \begin{aligned} f(\frac{5}{9}) &=\frac{(5-9 (\frac{5}{9}))^{2 / 3}}{7}+1 \\ &=1. \\ \end{aligned} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.