Calculus with Applications (10th Edition)

Published by Pearson
ISBN 10: 0321749006
ISBN 13: 978-0-32174-900-0

Chapter 5 - Graphs and the Derivative - 5.2 Relative Extrema - 5.2 Exercises - Page 272: 26

Answer

$$ f(x) =x^{2}+\frac{1}{x} $$ A relative minimum occurs at $x=\frac{1}{\sqrt[3] {2}}=\left(\frac{3 \sqrt{4}}{2}\right) ,$ and the value of the function $f$ at this value is given by: $$ \begin{aligned} f\left(\frac{3 \sqrt{4}}{2}\right) &=\left(\frac{\sqrt[3]{4}}{2}\right)^{2}+\left(\frac{\sqrt[3]{4}}{2}\right)^{-1} \\ &=\left(\frac{\sqrt[3]{4}}{2}\right)^{-1}\left[\left(\frac{\sqrt[3]{4}}{2}\right)^{3}+1\right] \\ &=\frac{2}{\sqrt[3]{4}}\left(\frac{4}{8}+1\right)=\frac{2}{\sqrt[3]{4}}\left(\frac{3}{2}\right) \cdot \frac{\sqrt[3]{2}}{\sqrt[3]{2}} \\ &=\frac{3 \sqrt[3]{2}}{2} \approx 1.890 \end{aligned} $$

Work Step by Step

$$ f(x) =x^{2}+\frac{1}{x} $$ To find the intervals where the function is increasing and decreasing. First, we find $f^{\prime}(x) $, $$ \begin{aligned} f^{\prime}(x) &=2x-\frac{1}{x^{2}}\\ &=\frac{2x^{3}-1}{x^{2}} \end{aligned} $$ To find the critical numbers, we first find any values of $x$ that make $f^{\prime} =0 $. Now, solve the equation $f^{\prime} =0 $ to get $$ \begin{aligned} f^{\prime}(x) =\frac{2x^{3}-1}{x^{2}}&=0\\ \Rightarrow\quad\quad\quad\quad\quad\\ 2x^{3}-1&=0\\ \Rightarrow\quad\quad\quad\quad\quad\\ 2x^{3}&=1 \\ x^{3}&=\frac{1}{2} \\ x &=\frac{1}{\sqrt[3] {2}} \\ \end{aligned} $$ Next, we find any values of $x$ where $f^{\prime}(x) $ fails to exist. This occurs whenever the denominator of $f^{\prime}(x) $ is $0$, here we observe that the denominator $x^{2}$ equal to 0, when $x=0$ But , $f(x) $ is not defined at $x=0 $. therefore, The only critical number is : $x =\frac{1}{\sqrt[3] {2}} $ . We can still apply the first derivative test, however, to find where $f$ is increasing and decreasing. Now, check the sign of $f^{\prime}(x)$. in the intervals $$ (-\infty, \frac{1}{\sqrt[3] {2}} ), \quad (\frac{1}{\sqrt[3] {2}} ,\infty ) . $$ (1) Test a number in the interval $(-\infty, \frac{1}{\sqrt[3] {2}} ) $ say $-1 $: $$ \begin{aligned} f^{\prime}(-1) &=\frac{2(-1)^{3}-1}{(-1)^{2}}\\ &=-3\\ &\lt 0 \end{aligned} $$ we see that $f^{\prime}(x)$ is negative in that interval, so $f(x)$ is decreasing on $(-\infty, \frac{1}{\sqrt[3] {2}} ) $. (2) Test a number in the interval $ (\frac{1}{\sqrt[3] {2}} ,\infty ) $ say $ 1$: $$ \begin{aligned} f^{\prime}(1) &=\frac{2(1)^{3}-1}{(1)^{2}}\\ &=1\\ &\gt 0 \end{aligned} $$ we see that $f^{\prime}(x)$ is positive in that interval, so $f(x)$ is increasing on $(\frac{1}{\sqrt[3] {2}} ,\infty )$. From (1), (2) we find that: (*) The function $f$ is decreasing on interval $ (-\infty, \frac{1}{\sqrt[3] {2}} ) , $ and is increasing on interval $ (\frac{1}{\sqrt[3] {2}} ,\infty ) . $ So, a relative minimum occurs at $x=\frac{1}{\sqrt[3] {2}}=\left(\frac{3 \sqrt{4}}{2}\right) ,$ and the value of the function $f$ at this value is given by: $$ \begin{aligned} f\left(\frac{3 \sqrt{4}}{2}\right) &=\left(\frac{\sqrt[3]{4}}{2}\right)^{2}+\left(\frac{\sqrt[3]{4}}{2}\right)^{-1} \\ &=\left(\frac{\sqrt[3]{4}}{2}\right)^{-1}\left[\left(\frac{\sqrt[3]{4}}{2}\right)^{3}+1\right] \\ &=\frac{2}{\sqrt[3]{4}}\left(\frac{4}{8}+1\right)=\frac{2}{\sqrt[3]{4}}\left(\frac{3}{2}\right) \cdot \frac{\sqrt[3]{2}}{\sqrt[3]{2}} \\ &=\frac{3 \sqrt[3]{2}}{2} \approx 1.890 \end{aligned} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.