Calculus with Applications (10th Edition)

Published by Pearson
ISBN 10: 0321749006
ISBN 13: 978-0-32174-900-0

Chapter 5 - Graphs and the Derivative - 5.2 Relative Extrema - 5.2 Exercises - Page 272: 18

Answer

$$ f(x) =-\frac{2}{3} x^{3}-\frac{1}{2} x^{2}+3 x-4 $$ A relative minimum occurs at $x=\frac{-3}{2},$ and we find that: $$ f(\frac{-3}{2}) =-\frac{59}{8} . $$ A relative maximum occurs at $x=1,$ and we find that: $$ f(1) =-\frac{13}{6}. $$

Work Step by Step

$$ f(x) =-\frac{2}{3} x^{3}-\frac{1}{2} x^{2}+3 x-4 $$ To find the intervals where the function is increasing and decreasing. First, we find $f^{\prime}(x) $, $$ \begin{aligned} f^{\prime}(x) &=-\frac{2}{3}(3)x^{2}-\frac{1}{2}(2) x+3 (1)\\ &=-2 x^{2}-x+3 \\ &=-\left(2 x^{2}+x-3\right) \\ &=-(2 x+3)(x-1) \end{aligned} $$ To find the critical numbers, we first find any values of $x$ that make $f^{\prime} =0 $. Now, solve the equation $f^{\prime} =0 $ to get $$ \begin{aligned} f^{\prime}(x)& =-(2 x+3)(x-1) =0\\ \Rightarrow\quad\quad\quad\quad\quad\\ 2 x+3 =0 \quad & \text {or } \quad x-1 =0\\ \Rightarrow\quad\quad\quad\quad\quad\\ x =\frac{-3}{2} \quad & \text {or } \quad x =1\\ \end{aligned} $$ So, the critical number are $x=1, \quad \frac{-3}{2}$ We can still apply the first derivative test, however, to find where $f$ is increasing and decreasing. Now, check the sign of $f^{\prime}(x)$ in the intervals $$ (-\infty, \frac{-3}{2} ), \quad (\frac{-3}{2} , 1 ) \quad \text { and} \quad (1 , \infty ) . $$ (1) Test a number in the interval $(-\infty, \frac{-3}{2}) $ say $-2 $: $$ \begin{aligned} f^{\prime}(-2) &=-(2 (-2)+3)((-2)-1) \\ &=-3\\ & \lt 0 \end{aligned} $$ we see that $f^{\prime}(x)$ is negative in that interval, so $f(x)$ is decreasing on $(-\infty, \frac{-3}{2})$. (2) Test a number in the interval $(\frac{-3}{2} , 1) $ say $ 0$: $$ \begin{aligned} f^{\prime}(0) &=-(2 (0)+3)((0)-1) \\ &=3\\ & \gt 0 \end{aligned} $$ we see that $f^{\prime}(x)$ is positive in that interval, so $f(x)$ is increasing on $(\frac{-3}{2} , 1) $. (3) Test a number in the interval $(1, \infty ) $ say $ 2 $: $$ \begin{aligned} f^{\prime}(2) &=-(2 (2)+3)((2)-1) \\ &=-7\\ & \lt 0 \end{aligned} $$ we see that $f^{\prime}(x)$ is negative in that interval, so $f(x)$ is decreasing on $(1 , \infty )$. From (1), (2) and (3) we find that: (*) The function $f$ is decreasing on intervals $ (-\infty ,\frac{-3}{2} ), $ and is increasing on interval $(\frac{-3}{2}, 1). $ So, a relative minimum occurs at $x=\frac{-3}{2},$ and the value of the function $f$ at this value is given by: $$ \begin{aligned} f(\frac{-3}{2}) &=-\frac{2}{3} (\frac{-3}{2})^{3}-\frac{1}{2} (\frac{-3}{2})^{2}+3 (\frac{-3}{2})-4 \\ &=-\frac{59}{8} \\ \end{aligned} $$ (**) The function $f$ is increasing on interval $(\frac{-3}{2}, 1), $ and is decreasing on interval $(1, \infty). $ So, a relative maximum occurs at $x=1,$ and the value of the function $f$ at this value is given by: $$ \begin{aligned} f(1) &=-\frac{2}{3} (1)^{3}-\frac{1}{2} (1)^{2}+3 (1)-4 \\ &=-\frac{13}{6}\\ \end{aligned} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.