Calculus with Applications (10th Edition)

Published by Pearson
ISBN 10: 0321749006
ISBN 13: 978-0-32174-900-0

Chapter 2 - Nonlinear Functions - 2.5 Logarithmic Functions - 2.5 Exercises: 1

Answer

$\log_{5}$125 = 3

Work Step by Step

The logarithm formula using variables is: $\log_{B}$A = C Using the same variables, the spots they would go in the exponential formula is: B$^{C}$ = A So to write $5^{3}$ = 125 in logarithm form, you first have to look at which number corresponds to which variable in the exponential formula. In this case: 5 corresponds to B 3 corresponds to C and 125 corresponds to A Knowing which number corresponds to which variable in the exponential formula, you can then plug those into the logarithm formula to get your answer which will be: $\log_{5}$125 = 3
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.