Answer
$$\frac{{{x^2}}}{{256}} - \frac{{{y^2}}}{{144}} = 1$$
Work Step by Step
$$\eqalign{
& {\text{Focus }}\left( {20,0} \right) \cr
& {\text{Asymptotes }}y = \pm \frac{3}{4}x \cr
& {\text{Find the center of the hyperbola}} \cr
& {\text{let }}y = y \cr
& \frac{3}{4}x = - \frac{3}{4}x \cr
& \frac{3}{4}x + \frac{3}{4}x = 0 \cr
& x = 0 \to y = 0 \cr
& {\text{The center of the hyperbola is }}\left( {0,0} \right) = \left( {h,k} \right),{\text{ so}} \cr
& {\text{Center }}\left( {0,0} \right){\text{ Focus }}\left( {20,0} \right) \cr
& {\text{The standard equation of the hyperbola is}} \cr
& \frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1 \cr
& {\text{Foci }}\left( { \pm c,0} \right) \to c = 20 \cr
& {\text{Asymptotes }}y = \pm \frac{b}{a}x \cr
& \frac{b}{a} = \frac{3}{4} \to b = \frac{3}{4}a \cr
& {\text{We know that }}{c^2} = {a^2} + {b^2} \cr
& {\left( {20} \right)^2} = {a^2} + {\left( {\frac{3}{4}a} \right)^2} \cr
& {\left( {20} \right)^2} = {a^2} + \frac{9}{{16}}{a^2} \cr
& \frac{{25}}{{16}}{a^2} = {\left( {20} \right)^2} \cr
& {a^2} = \frac{{16}}{{25}}{\left( {20} \right)^2} \cr
& {a^2} = 256 \cr
& b = \frac{3}{4}a = \frac{3}{4}\left( {16} \right) = 12 \cr
& {b^2} = 144 \cr
& \cr
& \underbrace {\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1}_ \downarrow \cr
& \frac{{{x^2}}}{{256}} - \frac{{{y^2}}}{{144}} = 1 \cr} $$