Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 10 - Conics, Parametric Equations, and Polar Coordinates - 10.1 Exercises - Page 692: 33

Answer

$$\frac{{{x^2}}}{{16}}{\text{ + }}\frac{{{y^2}}}{{16/7}} = {\text{1}}$$

Work Step by Step

$$\eqalign{ & {\text{Center }}\left( {0,0} \right) \cr & {\text{The major axis is horizontal, so the standard equation of the}} \cr & {\text{ellipse is: }}\frac{{{x^2}}}{{{a^2}}}{\text{ + }}\frac{{{y^2}}}{{{b^2}}} = {\text{1, }}a > b \cr & {\text{We have the points }}\left( {3,1} \right){\text{ and }}\left( {4,0} \right),{\text{ so}} \cr & {\text{For }}\left( {3,1} \right) \cr & \frac{{{{\left( 3 \right)}^2}}}{{{a^2}}}{\text{ + }}\frac{{{{\left( 1 \right)}^2}}}{{{b^2}}} = {\text{1}} \cr & \frac{9}{{{a^2}}} + \frac{1}{{{b^2}}} = 1{\text{ }}\left( {\bf{1}} \right) \cr & {\text{For }}\left( {4,0} \right) \cr & \frac{{{{\left( 4 \right)}^2}}}{{{a^2}}}{\text{ + }}\frac{{{{\left( 0 \right)}^2}}}{{{b^2}}} = {\text{1}} \cr & \frac{{16}}{{{a^2}}} = 1 \to {a^2} = 16,{\text{ substituting }}{a^2}{\text{ into }}\left( {\bf{1}} \right) \cr & \frac{9}{{16}} + \frac{1}{{{b^2}}} = 1 \cr & {b^2} = \frac{{16}}{7} \cr & \cr & \frac{{{x^2}}}{{{a^2}}}{\text{ + }}\frac{{{y^2}}}{{{b^2}}} = {\text{1}} \cr & \frac{{{x^2}}}{{16}}{\text{ + }}\frac{{{y^2}}}{{16/7}} = {\text{1}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.