Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 10 - Conics, Parametric Equations, and Polar Coordinates - 10.1 Exercises - Page 692: 47

Answer

$$\frac{{{{\left( {x - 3} \right)}^2}}}{9} - \frac{{{{\left( {y - 2} \right)}^2}}}{4} = 1$$

Work Step by Step

$$\eqalign{ & {\text{Vertices }}\left( {0,2} \right){\text{ and }}\left( {6,2} \right) \cr & {\text{The hyperbola has the standard form,}} \cr & \frac{{{{\left( {x - h} \right)}^2}}}{{{a^2}}} - \frac{{{{\left( {y - k} \right)}^2}}}{{{b^2}}} = 1 \cr & {\text{With}} \cr & \underbrace {{\text{Vertices }}\left( {0,2} \right){\text{ and }}\left( {6,2} \right)}_{{\text{Vertices }}\left( {h - a,k} \right){\text{ and }}\left( {h + a,k} \right)} \to k = 2 \cr & h - a = 0 \cr & h + a = 6 \cr & 2h = 6 \to h = 3,{\text{ }}a = 3 \cr & {\text{Asymptotes }}\underbrace {y = \pm \frac{b}{a}\left( {x - h} \right) + k}_{} \cr & y = \frac{2}{3}x,{\text{ }}y = - \frac{2}{3}x + 4 \cr & \pm \frac{b}{a} = \pm \frac{2}{3} \cr & \frac{b}{a} = \frac{2}{3} \cr & \frac{b}{3} = \frac{2}{3} \to b = 2 \cr & \underbrace {\frac{{{{\left( {x - h} \right)}^2}}}{{{a^2}}} - \frac{{{{\left( {y - k} \right)}^2}}}{{{b^2}}} = 1}_ \downarrow \cr & \frac{{{{\left( {x - 3} \right)}^2}}}{9} - \frac{{{{\left( {y - 2} \right)}^2}}}{4} = 1 \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.