Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 10 - Conics, Parametric Equations, and Polar Coordinates - 10.1 Exercises - Page 692: 30

Answer

$$\frac{{{{\left( {x - 4} \right)}^2}}}{{16}} + \frac{{{{\left( {y - 3} \right)}^2}}}{7} = 1$$

Work Step by Step

$$\eqalign{ & {\text{Vertices }}\left( {0,3} \right),\left( {8,3} \right),{\text{ Eccentricity :}}\frac{3}{4} \cr & {\text{Vertices }}\left( {\underbrace 0_x,\underbrace 3_y} \right){\text{and}}\left( {\underbrace 8_x,\underbrace 3_y} \right) \cr & y = y{\text{, so the equation has the standard form}} \cr & \frac{{{{\left( {x - h} \right)}^2}}}{{{a^2}}} + \frac{{{{\left( {y - k} \right)}^2}}}{{{b^2}}} = 1 \cr & {\text{With}} \cr & {\text{Vertex }}\left( {h - a,k} \right){\text{ and }}\left( {h + a,k} \right) \cr & {\text{Vertices }}\left( {\underbrace 0_{h - a},\underbrace 3_k} \right){\text{and}}\left( {\underbrace 8_{h + a},\underbrace 3_k} \right) \Rightarrow k = 3 \cr & {\text{Find }}a{\text{ and }}h \cr & h - a = 0 \cr & h + a = 8 \cr & 2h = 8 \cr & h = 4 \cr & a = 8 - h \Rightarrow a = 4 \cr & {\text{Eccentricity: }}e = \frac{c}{a} \cr & \frac{3}{4} = \frac{c}{4} \to c = 3 \cr & {b^2} = {a^2} - {c^2} = 7 \cr & \cr & \frac{{{{\left( {x - h} \right)}^2}}}{{{a^2}}} + \frac{{{{\left( {y - k} \right)}^2}}}{{{b^2}}} = 1 \cr & \frac{{{{\left( {x - 4} \right)}^2}}}{{{4^2}}} + \frac{{{{\left( {y - 3} \right)}^2}}}{7} = 1 \cr & \frac{{{{\left( {x - 4} \right)}^2}}}{{16}} + \frac{{{{\left( {y - 3} \right)}^2}}}{7} = 1 \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.