Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 10 - Conics, Parametric Equations, and Polar Coordinates - 10.1 Exercises - Page 692: 34

Answer

$$\frac{{{{\left( {x - 1} \right)}^2}}}{4}{\text{ + }}\frac{{{{\left( {y - 2} \right)}^2}}}{{16}} = {\text{1}}$$

Work Step by Step

$$\eqalign{ & {\text{Center }}\left( {1,2} \right) \cr & {\text{The major axis is vertical, so the standard equation of the}} \cr & {\text{ellipse is: }}\frac{{{{\left( {x - h} \right)}^2}}}{{{b^2}}}{\text{ + }}\frac{{{{\left( {y - k} \right)}^2}}}{{{a^2}}} = {\text{1, }}a > b \cr & {\text{Center }}\left( {1,2} \right) \to \left( {h,k} \right) = \left( {1,2} \right) \cr & \frac{{{{\left( {x - 1} \right)}^2}}}{{{b^2}}}{\text{ + }}\frac{{{{\left( {y - 2} \right)}^2}}}{{{a^2}}} = {\text{1}} \cr & {\text{We have the points }}\left( {1,6} \right){\text{ and }}\left( {3,2} \right),{\text{ so}} \cr & {\text{*For }}\left( {3,1} \right) \cr & \frac{{{{\left( {1 - 1} \right)}^2}}}{{{b^2}}}{\text{ + }}\frac{{{{\left( {6 - 2} \right)}^2}}}{{{a^2}}} = {\text{1}} \cr & \frac{{16}}{{{a^2}}} = {\text{1}} \to {a^2} = 16 \cr & \cr & {\text{*For }}\left( {3,2} \right) \cr & \frac{{{{\left( {3 - 1} \right)}^2}}}{{{b^2}}}{\text{ + }}\frac{{{{\left( {2 - 2} \right)}^2}}}{{{a^2}}} = {\text{1}} \cr & \frac{4}{{{b^2}}} = {\text{1}} \to {b^2} = 4 \cr & \cr & \frac{{{{\left( {x - 1} \right)}^2}}}{{{b^2}}}{\text{ + }}\frac{{{{\left( {y - 2} \right)}^2}}}{{{a^2}}} = {\text{1}} \cr & \frac{{{{\left( {x - 1} \right)}^2}}}{4}{\text{ + }}\frac{{{{\left( {y - 2} \right)}^2}}}{{16}} = {\text{1}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.