Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 10 - Conics, Parametric Equations, and Polar Coordinates - 10.1 Exercises - Page 692: 35

Answer

$${\text{Foci}}\left( { - \sqrt {41} ,0} \right){\text{ and }}\left( {\sqrt {41} ,0} \right)$$ $${\text{Vertices}}\left( { - 5,0} \right){\text{ and }}\left( {5,0} \right)$$ $${\text{Center}}\left( {0,0} \right)$$

Work Step by Step

$$\eqalign{ & \frac{{{x^2}}}{{25}} - \frac{{{y^2}}}{{16}} = 1 \cr & {\text{This equation is written in standard form}} \cr & \frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1 \cr & \frac{{{x^2}}}{{25}} - \frac{{{y^2}}}{{16}} = 1 \Rightarrow \underbrace {\frac{{{x^2}}}{{{5^2}}} - \frac{{{y^2}}}{{{4^2}}} = 1}_{\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1} \to a = 5,{\text{ }}b = 4 \cr & c = \sqrt {{a^2} + {b^2}} \cr & c = \sqrt {{5^2} + {4^2}} \Rightarrow \boxed{c = \sqrt {41} } \cr & {\text{Characteristics of the hyperbola }} \cr & {\text{Center}}\left( {0,0} \right) \cr & \underbrace {{\text{Vertices}}\left( { - a,0} \right){\text{ and }}\left( {a,0} \right)}_ \downarrow \cr & {\text{Vertices}}\left( { - 5,0} \right){\text{ and }}\left( {5,0} \right) \cr & \underbrace {{\text{Foci}}\left( { - c,0} \right){\text{ and }}\left( {c,0} \right)}_ \Downarrow \cr & {\text{Foci}}\left( { - \sqrt {41} ,0} \right){\text{ and }}\left( {\sqrt {41} ,0} \right) \cr & {\text{Graph:}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.