Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 10 - Conics, Parametric Equations, and Polar Coordinates - 10.1 Exercises - Page 692: 41

Answer

$${x^2} - \frac{{{y^2}}}{{25}} = 1$$

Work Step by Step

$$\eqalign{ & {\text{Vertices }}\left( { \pm 1,0} \right) \cr & {\text{Asymptotes }}y = \pm 5x \cr & {\text{Vertices }}\left( {\underbrace { - 1}_x,\underbrace 0_y} \right){\text{ and }}\left( {\underbrace 1_x,\underbrace 0_y} \right) \cr & y = y{\text{ so the hyperbola has the standard form}} \cr & \frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1 \cr & {\text{Characteristics of the hyperbola}} \cr & {\text{Vertices }}\left( { - a,0} \right){\text{ and }}\left( {a,0} \right) \cr & {\text{Vertices }}\left( {\underbrace { - 1}_{ - a},\underbrace 0_0} \right){\text{ and }}\left( {\underbrace 1_a,\underbrace 0_0} \right) \Rightarrow a = 1 \cr & \cr & {\text{Asymptotes:}} \pm \frac{b}{a}x \cr & \pm \frac{b}{a}x = \pm 5x \cr & \frac{b}{a} = 5 \to b = 5 \cr & \cr & \underbrace {\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1}_ \Downarrow \cr & \frac{{{x^2}}}{{{{\left( 1 \right)}^2}}} - \frac{{{y^2}}}{{{{\left( 5 \right)}^2}}} = 1 \cr & {x^2} - \frac{{{y^2}}}{{25}} = 1 \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.