Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 10 - Conics, Parametric Equations, and Polar Coordinates - 10.1 Exercises - Page 692: 44

Answer

$$\frac{{{y^2}}}{9} - \frac{{{{\left( {x - 2} \right)}^2}}}{{16}} = 1$$

Work Step by Step

$$\eqalign{ & {\text{Vertices }}\left( {2, \pm 3} \right) \cr & {\text{Vertices }}\left( {\underbrace 2_x,\underbrace 3_y} \right){\text{ and }}\left( {\underbrace 2_x,\underbrace { - 3}_y} \right) \cr & x = x{\text{ so the hyperbola has the standard form}} \cr & \frac{{{{\left( {y - k} \right)}^2}}}{{{a^2}}} - \frac{{{{\left( {x - h} \right)}^2}}}{{{b^2}}} = 1 \cr & {\text{Characteristics of the hyperbola}} \cr & {\text{Vertices }}\left( {h,k - a} \right){\text{ and }}\left( {h,k + a} \right) \cr & {\text{Vertices }}\left( {2,\underbrace { - 3}_{ - a},} \right){\text{ and }}\left( {0,\underbrace 3_a} \right) \cr & k - a = - 3 \cr & k + a = 3 \cr & k = 0,{\text{ }}a = 3,{\text{ }}h = 2 \cr & {\text{Foci }}\left( {h,k - c} \right){\text{ and }}\left( {h,k + c} \right) \cr & {\text{Foci }}\left( {2,\underbrace { - 5}_{k - c},} \right){\text{ and }}\left( {0,\underbrace 5_{k + c}} \right) \cr & k - c = - 5 \to c = 5 \cr & {b^2} = {c^2} - {a^2} = {5^2} - {3^2} = 16 \cr & \cr & \underbrace {\frac{{{{\left( {y - k} \right)}^2}}}{{{a^2}}} - \frac{{{{\left( {x - h} \right)}^2}}}{{{b^2}}} = 1}_ \downarrow \cr & \frac{{{{\left( {y - 0} \right)}^2}}}{9} - \frac{{{{\left( {x - 2} \right)}^2}}}{{16}} = 1 \cr & \frac{{{y^2}}}{9} - \frac{{{{\left( {x - 2} \right)}^2}}}{{16}} = 1 \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.