Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 10 - Conics, Parametric Equations, and Polar Coordinates - 10.1 Exercises - Page 692: 46

Answer

$$\frac{{{x^2}}}{{36}} - \frac{{{y^2}}}{{64}} = 1$$

Work Step by Step

$$\eqalign{ & {\text{Center }}\left( {0,0} \right) \cr & {\text{Vertex }}\left( {6,0} \right) \cr & {\text{Focus }}\left( {10,0} \right) \cr & {\text{The hyperbola has the standard form,}} \cr & \frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1 \cr & {\text{With: }} \cr & {\text{Vertices }}\left( { - a,0} \right){\text{ and }}\left( {a,0} \right) \cr & {\text{Vertex }}\left( {6,0} \right) \to a = 6 \cr & {\text{Foci }}\left( { - c,0} \right){\text{ and }}\left( {c,0} \right) \cr & {\text{Focus }}\left( {10,0} \right) \to c = 10 \cr & {b^2} = {c^2} - {a^2} = 100 - 36 = 64 \cr & \underbrace {\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1}_ \downarrow \cr & \frac{{{x^2}}}{{36}} - \frac{{{y^2}}}{{64}} = 1 \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.