Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 10 - Conics, Parametric Equations, and Polar Coordinates - 10.1 Exercises - Page 692: 29

Answer

$$\frac{{{x^2}}}{{36}} + \frac{{{y^2}}}{{11}} = 1$$

Work Step by Step

$$\eqalign{ & {\text{Center }}\left( {0,0} \right){\text{ Vertex:}}\left( {6,0} \right),{\text{ Focus }}\left( {5,0} \right) \cr & {\text{Focus}}\left( {\underbrace 5_x,\underbrace 0_y} \right) \cr & {\text{Vertices }}\left( {\underbrace 6_x,\underbrace 0_y} \right) \cr & y = y{\text{ so the orientation of the major axis is horizontal}} \cr & {\text{The standard form of the equation is}}:\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1 \cr & {\text{With}} \cr & {\text{Vertices }}\left( { - a,0} \right){\text{ and }}\left( {a,0} \right) \cr & {\text{Foci}}\left( { - c,0} \right){\text{ and }}\left( {c,0} \right) \cr & b = \sqrt {{a^2} - {c^2}} \cr & {\text{Therefore,}} \cr & {\text{Vertices }}\left( {\underbrace 6_a,\underbrace 0_0} \right) \Rightarrow a = 6 \cr & {\text{Foci }}\left( {\underbrace 5_c,\underbrace 0_0} \right) \Rightarrow c = 5 \cr & b = \sqrt {{a^2} - {c^2}} \cr & b = \sqrt {{6^2} - {5^2}} = \sqrt {11} \cr & {\text{The Standard form of the equation is}} \cr & \underbrace {\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1}_ \Downarrow \cr & \frac{{{x^2}}}{{{{\left( 6 \right)}^2}}} + \frac{{{y^2}}}{{{{\left( {\sqrt {11} } \right)}^2}}} = 1 \cr & \frac{{{x^2}}}{{36}} + \frac{{{y^2}}}{{11}} = 1 \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.