Intermediate Algebra for College Students (7th Edition)

Published by Pearson
ISBN 10: 0-13417-894-7
ISBN 13: 978-0-13417-894-3

Chapter 7 - Section 7.3 - Multiplying and Simplifying Radical Expressions - Exercise Set - Page 531: 37



Work Step by Step

Factor out 3 in the trinomial to obtain: $f(x)=\sqrt{3(x^2-2x+1)}$ The trinomial is a perfect square whose factored form is $(x-1)^2$. Thus, $f(x)=\sqrt{3(x-1)^2}$ The principal square root of any number/expression is always non-negative. Since $x$ can be any real number, then an absolute value must be applied to the principal square root of $(x-1)^2$ to make it non-negative for all values of $x$. Thus, simplifying the function gives: $f(x)=\sqrt{3(x-1)^2} \\f(x)=|x-1|\sqrt{3}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.