College Algebra 7th Edition

Published by Brooks Cole
ISBN 10: 1305115546
ISBN 13: 978-1-30511-554-5

Chapter 4, Exponential and Logarithmic Functions - Chapter 4 Review - Concept Check - Page 425: 46


$\log_2{x} + \frac{1}{2}\cdot \log_2{(x^2+1)}$

Work Step by Step

Use the rule $\sqrt{a}=a^{\frac{1}{2}}$ to obtain: $\log_2{(x\sqrt{x^2+1})}=\log_2{(x(x^2+1)^{\frac{1}{2}})}$ RECALL: (1) $\log_a{(PQ)}= \log_a{P} + \log_a{Q}$ (2) $\log_a{(P^n)}=n \cdot \log_a{P}$ Use rule (1) above to obtain $\log_2{(x(x^2+1)^{\frac{1}{2}})}=\log_2{x} +\log_2{(x^2+1)^{\frac{1}{2}})}$ Use rule (2) above to obtain: $\log_2{x} +\log_2{(x^2+1)^{\frac{1}{2}})}=\log_2{x} + \frac{1}{2}\cdot \log_2{(x^2+1)}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.