Chemistry: The Central Science (13th Edition)

Published by Prentice Hall
ISBN 10: 0321910419
ISBN 13: 978-0-32191-041-7

Chapter 16 - Acid-Base Equilibria - Exercises - Page 719: 16.58

Answer

In equilibrium: $[H_3O^+] = 7.45 \times 10^{-3}M$ $[Cl{O_2}^-] = 7.45 \times 10^{-3}M$ $[HClO_2] = 5.05 \times 10^{-3}M$

Work Step by Step

1. Drawing the ICE table we get: -$[H_3O^+] = [A^-] = x$ -$[HA] = [HA]_{initial} - x$ 2. Now, use the Ka value and equation to find the 'x' value. $Ka = \frac{[H_3O^+][A^-]}{ [HA]}$ $Ka = 1.1 \times 10^{- 2}= \frac{x * x}{ 1.25 \times 10^{- 2}- x}$ $Ka = 1.1 \times 10^{- 2}= \frac{x^2}{ 1.25 \times 10^{- 2}- x}$ $ 1.37 \times 10^{- 4} - 1.1 \times 10^{- 2}x = x^2$ $ 1.37 \times 10^{- 4} - 1.1 \times 10^{- 2}x - x^2 = 0$ Bhaskara: $\Delta = (- 1.1 \times 10^{- 2})^2 - 4 * (-1) *( 1.37 \times 10^{- 4})$ $\Delta = 1.21 \times 10^{- 4} + 5.5 \times 10^{- 4} = 6.71 \times 10^{- 4}$ $x_1 = \frac{ - (- 1.1 \times 10^{- 2})+ \sqrt { 6.71 \times 10^{- 4}}}{2*(-1)}$ or $x_2 = \frac{ - (- 1.1 \times 10^{- 2})- \sqrt { 6.71 \times 10^{- 4}}}{2*(-1)}$ $x_1 = - 1.84 \times 10^{- 2} (Negative)$ $x_2 = 7.45 \times 10^{- 3}$ The concentration can't be negative. So: $[H_3O^+] = [ClO_2^-] = x= 7.45 \times 10^{-3}M$ And $[HClO_2] = 0.0125 - 7.45 \times 10^{-3} = 5.05 \times 10^{-3}M$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.