Chemistry: The Central Science (13th Edition)

Published by Prentice Hall
ISBN 10: 0321910419
ISBN 13: 978-0-32191-041-7

Chapter 16 - Acid-Base Equilibria - Exercises - Page 719: 16.57

Answer

$[H_3O^+] = 1.775 \times 10^{- 3}M $ $[C_6H_5COO^-] = 1.775 \times 10^{- 3}M $ $[C_6H_5COOH] \approx 0.05M$

Work Step by Step

1. Drawing the equilibrium (ICE) table, we get these concentrations at equilibrium:** The image is in the end of this answer. -$[H_3O^+] = [C_6H_5COO^-] = x$ -$[C_6H_5COOH] = [C_6H_5COOH]_{initial} - x = 0.05 - x$ For approximation, we consider: $[C_6H_5COOH] = 0.05M$ 2. Now, use the Ka value and equation to find the 'x' value. $Ka = \frac{[H_3O^+][C_6H_5COO^-]}{ [C_6H_5COOH]}$ $Ka = 6.3 \times 10^{- 5}= \frac{x * x}{ 0.05}$ $Ka = 6.3 \times 10^{- 5}= \frac{x^2}{ 0.05}$ $ 3.15 \times 10^{- 6} = x^2$ $x = 1.775 \times 10^{- 3}$ Percent ionization: $\frac{ 1.775 \times 10^{- 3}}{ 0.05} \times 100\% = 3.55\%$ %ionization < 5% : Right approximation. Therefore: $[H_3O^+] = [C_6H_5COO^-] = x = 1.775 \times 10^{- 3}M $ And, since 'x' has a very small value (compared to the initial concentration): $[C_6H_5COOH] \approx 0.05M$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.