Precalculus: Mathematics for Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 1305071751
ISBN 13: 978-1-30507-175-9

Chapter 11 - Section 11.4 - Shifted Conics - 11.4 Exercises - Page 814: 9

Answer

(a) Center: $C(-5,1)$ Vertices: $V_1(-9,1)$ and $V_2(-1,1)$ Foci: $F_1(-5-2\sqrt {3},1)$ and $F_2(-5+2\sqrt {3},1)$ (b) Length of the major axis: $2a=8$ Length of the minor axis: $2b=4$ (c)

Work Step by Step

Equation of an ellipse with center at $(h,k)$ (major axis is horizontal): $\frac{(x-h)^2}{a^2}+\frac{(y-k)^2}{b^2}=1$ $\frac{(x+5)^2}{16}+\frac{(y-1)^2}{4}=1$ $\frac{[x-(-5)]^2}{4^2}+\frac{(y-1)^2}{2^2}=1$ $h=-5$ $k=1$ Center: $C(-5,1)$ $a=4$ $b=2$ $c^2=a^2-b^2=16-4=12$ $c=2\sqrt {3}$ The given equation can be obtained by shifting $\frac{x^2}{4^2}+\frac{y^2}{1^2}=1$ left 5 units and upward 1 unit. In this equation: Vertices: $V(±a,0)$ $V_1(-4,0)$ and $V_2(4,0)$ Foci: $F(±c,0)$ $F_1(-2\sqrt {3},0)$ and $F_2(2\sqrt {3},0)$ Now, shift these points 5 units to the left and 1 units upward: Vertices: $V_1(-9,1)$ and $V_2(-1,1)$ Foci: $F_1(-5-2\sqrt {3},1)$ and $F_2(-5+2\sqrt {3},1)$ Length of the major axis: $2a=8$ Length of the minor axis: $2b=4$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.