Precalculus: Mathematics for Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 1305071751
ISBN 13: 978-1-30507-175-9

Chapter 11 - Section 11.4 - Shifted Conics - 11.4 Exercises - Page 814: 26

Answer

(a) Center: $C(0,-2)$ $V_1(0,-8)$ and $V_2(0,4)$ $F_1(0,-12)$ and $F_2(0,8)$ Asymptotes: $y=\frac{3}{4}x-2$ $y=-\frac{3}{4}x-2$ (b)

Work Step by Step

Equation of a hyperbola with center at $(h,k)$ (transverse axis is vertical): $\frac{(y-k)^2}{a^2}-\frac{(x-h)^2}{b^2}=1$ $\frac{(y+2)^2}{36}-\frac{x^2}{64}=1$ $\frac{[y-(-2)]^2}{6^2}-\frac{(x-0)^2}{8^2}=1$ $h=0$ $k=-2$ Center: $C(0,-2)$ $a=6$ $b=8$ $c^2=a^2+b^2=6^2+8^2=36+64=100$ $c=10$ The given equation can be obtained by shifting $\frac{y^2}{6^2}-\frac{x^2}{8^2}=1$ downward 2 units. In $\frac{y^2}{6^2}-\frac{x^2}{8^2}=1$: Vertices: $V(0,±a)$ $V_1(0,-6)$ and $V_2(0,6)$ Foci: $F(0,±c)$ $F_1(0,-10)$ and $F_2(0,10)$ Now, shift these points 2 units downward: $V_1(0,-8)$ and $V_2(0,4)$ $F_1(0,-12)$ and $F_2(0,8)$ Asymptotes: $(y−k)=±\frac{a}{b}(x−h)$ $[y-(-2)]=±\frac{6}{8}(x-0)$ $y=±\frac{3}{4}x-2$ $y=\frac{3}{4}x-2$ and $y=-\frac{3}{4}x-2$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.