Precalculus: Mathematics for Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 1305071751
ISBN 13: 978-1-30507-175-9

Chapter 11 - Section 11.4 - Shifted Conics - 11.4 Exercises - Page 814: 22

Answer

(a) Center: $C(8,-6)$ Vertices: $V_1(7,-6)$ and $V_2(9,-6)$ Foci: $F_1(-\sqrt 2+8,-6)$ and $F_2(\sqrt 2+8,-6)$ Asymptotes: $y=x-14$ and $y=-x+2$ (b)

Work Step by Step

Equation of a hyperbola with center at $(h,k)$ (horizontal tranverse axis): $\frac{(x-h)^2}{a^2}-\frac{(y-k)^2}{b^2}=1$ $(x-8)^2-(y+6)^2=1$ $\frac{(x-8)^2}{1^2}-\frac{[y-(-6)]^2}{1^2}=1$ $h=8$ $k=-6$ Center: $C(8,-6)$ $a=1$ $b=1$ $c^2=a^2+b^2=1^2+1^2=2$ $c=\sqrt 2$ The given equation can be obtained by shifting $\frac{x^2}{1^2}-\frac{y^2}{1^2}=1$ right 8 units and downward 6 units. In $\frac{x^2}{1^2}-\frac{y^2}{1^2}=1$: Vertices: $V(±a,0)$ $V_1(-1,0)$ and $V_2(1,0)$ Foci: $F(±c,0)$ $F_1(-\sqrt 2,0)$ and $F_2(\sqrt 2,0)$ Now, shift these points 8 units to the right and 6 units downward: Vertices: $V_1(7,-6)$ and $V_2(9,-6)$ Foci: $F_1(-\sqrt 2+8,-6)$ and $F_2(\sqrt 2+8,-6)$ Asymptotes: $(y-k)=±\frac{b}{a}(x-h)$ $[y-(-6)]=±\frac{1}{1}(x-8)$ $(y+6)=±(x-8)$ $y=x-8-6$ $y=x-14$ and $y=-x+8-6$ $y=-x+2$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.