Precalculus: Mathematics for Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 1305071751
ISBN 13: 978-1-30507-175-9

Chapter 11 - Section 11.4 - Shifted Conics - 11.4 Exercises - Page 814: 8

Answer

(a) Center: $C(0,-2)$ Vertices: $V_1(0,-4)$ and $V_2(0,0)$ Foci: $F_1(0,-2-\sqrt 3)$ and $F_2(0,-2+\sqrt 3)$ (b) Length of the major axis: $2a=4$ Length of the minor axis: $2b=2$ (c)

Work Step by Step

Equation of an ellipse with center at $(h,k)$ (major axis is vertical): $\frac{(x-h)^2}{b^2}+\frac{(y-k)^2}{a^2}=1$ $x^2+\frac{(y+2)^2}{4}=1$ $\frac{(x-0)^2}{1^2}+\frac{[y-(-2)]^2}{2^2}=1$ $h=0$ $k=-2$ Center: $C(0,-2)$ $a=2$ $b=1$ $c^2=a^2-b^2=4-1=3$ $c=\sqrt 3$ The given equation can be obtained by shifting $\frac{x^2}{1^2}+\frac{y^2}{2^2}=1$ downward 2 units. In this equation: Vertices: $V(0,±a)$ $V_1(0,-2)$ and $V_2(0,2)$ Foci: $F(0,±c)$ $F_1(0,-\sqrt 3)$ and $F_2(0,\sqrt 3)$ Now, shift these points 2 units downward: Vertices: $V_1(0,-4)$ and $V_2(0,0)$ Foci: $F_1(0,-2-\sqrt 3)$ and $F_2(0,-2+\sqrt 3)$ Length of the major axis: $2a=4$ Length of the minor axis: $2b=2$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.