Precalculus: Mathematics for Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 1305071751
ISBN 13: 978-1-30507-175-9

Chapter 11 - Section 11.4 - Shifted Conics - 11.4 Exercises - Page 814: 18

Answer

(a) Vertex: $V(-\frac{1}{2},0)$ Focus: $F(0,p)=F(-\frac{1}{2},-\frac{1}{16})$ Directrix: $y=-p=\frac{1}{16}$ (b)

Work Step by Step

Equation of a parabola with vertical axis and vertex at $(h,k)$: $(x-h)^2=4p(y-k)$ $-4(x+\frac{1}{2})^2=y$ $[x-(-\frac{1}{2})]^2=-\frac{1}{4}(y-0)$ $h=-\frac{1}{2}$ $k=0$ Vertex: $V(-\frac{1}{2},0)$ $4p=-\frac{1}{4}$ $p=-\frac{1}{16}$. Parabola opens downward. The given equation can be obtained by shifting $x^2=-\frac{1}{4}y$ left $\frac{1}{2}$ unit. In this equation: Focus: $F(0,p)=F(0,-\frac{1}{16})$ Directrix: $y=-p=\frac{1}{16}$ Now, shift the vertex $\frac{1}{2}$ units to the left: Focus: $F(0,p)=F(-\frac{1}{2},-\frac{1}{16})$ Directrix: $y=-p=\frac{1}{16}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.