Precalculus: Mathematics for Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 1305071751
ISBN 13: 978-1-30507-175-9

Chapter 11 - Section 11.4 - Shifted Conics - 11.4 Exercises - Page 814: 21

Answer

(a) Center: $C(-1,3)$ Vertices: $V_1(-4,3)$ and $V_2(2,3)$ Foci: $F_1(-6,3)$ and $F_2(4,3)$ Asymptotes: $y=\frac{4}{3}x+\frac{13}{3}$ and $y=-\frac{4}{3}x+\frac{5}{3}$ (b)

Work Step by Step

Equation of a hyperbola with center at $(h,k)$ (horizontal tranverse axis): $\frac{(x-h)^2}{a^2}-\frac{(y-k)^2}{b^2}=1$ $\frac{(x+1)^2}{9}-\frac{(y-3)^2}{16}=1$ $\frac{[x-(-1)]^2}{3^2}-\frac{(y-3)^2}{4^2}=1$ $h=-1$ $k=3$ Center: $C(-1,3)$ $a=3$ $b=4$ $c^2=a^2+b^2=3^2+4^2=25$ $c=5$ The given equation can be obtained by shifting $\frac{x^2}{3^2}-\frac{y^2}{4^2}=1$ left 1 units and upward 3 units. In $\frac{x^2}{3^2}-\frac{y^2}{4^2}=1$: Vertices: $V(±a,0)$ $V_1(-3,0)$ and $V_2(3,0)$ Foci: $F(±c,0)$ $F_1(-5,0)$ and $F_2(5,0)$ Now, shift these points 1 unit to the left and 3 units upward: Vertices: $V_1(-4,3)$ and $V_2(2,3)$ Foci: $F_1(-6,3)$ and $F_2(4,3)$ Asymptotes: $(y-k)=±\frac{b}{a}(x-h)$ $(y-3)=±\frac{4}{3}[x-(-1)]$ $(y-3)=±\frac{4}{3}(x+1)$ $y=\frac{4}{3}x+\frac{4}{3}+3$ $y=\frac{4}{3}x+\frac{13}{3}$ and $y=-\frac{4}{3}x-\frac{4}{3}+3$ $y=-\frac{4}{3}x+\frac{5}{3}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.