Precalculus: Mathematics for Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 1305071751
ISBN 13: 978-1-30507-175-9

Chapter 11 - Section 11.4 - Shifted Conics - 11.4 Exercises - Page 814: 23

Answer

(a) Center: $C(-1,0)$ $V_1(-1,-1)$ and $V_2(-1,1)$ $F_1(-1,-\sqrt {5})$ and $F_2(-1,\sqrt {5})$ $y=\frac{1}{2}x+\frac{1}{2}$ $y=-\frac{1}{2}x-\frac{1}{2}$ (b)

Work Step by Step

Equation of a hyperbola with center at $(h,k)$ (transverse axis is vertical): $\frac{(y-k)^2}{a^2}-\frac{(x-h)^2}{b^2}=1$ $y^2-\frac{(x+1)^2}{4}=1$ $\frac{(y-0)^2}{1^2}-\frac{[x-(-1)]^2}{2^2}=1$ $h=-1$ $k=0$ Center: $C(-1,0)$ $a=1$ $b=2$ $c^2=a^2+b^2=2^2+1^2=4+1=5$ $c=\sqrt {5}$ The given equation can be obtained by shifting $\frac{y^2}{1^2}-\frac{x^2}{2^2}=1$ left 1 unit. In $\frac{y^2}{1^2}-\frac{x^2}{2^2}=1$: Vertices: $V(0,±a)$ $V_1(0,-1)$ and $V_2(0,1)$ Foci: $F(0,±c)$ $F_1(0,-\sqrt {5})$ and $F_2(0,\sqrt {5})$ Now, shift these points 1 unit downward: $V_1(-1,-1)$ and $V_2(-1,1)$ $F_1(-1,-\sqrt {5})$ and $F_2(-1,\sqrt {5})$ Asymptotes: $(y−k)=±\frac{a}{b}(x−h)$ $y=±\frac{1}{2}[x-(-1)]$ $y=±\frac{1}{2}(x+1)$ $y=\frac{1}{2}x+\frac{1}{2}$ and $y=-\frac{1}{2}x-\frac{1}{2}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.