Precalculus: Mathematics for Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 1305071751
ISBN 13: 978-1-30507-175-9

Chapter 11 - Section 11.4 - Shifted Conics - 11.4 Exercises - Page 814: 6

Answer

(a) Center: $C(3,-3)$ Vertices: $V_1(-1,-3)$ and $V_2(7,-3)$ Foci: $F_1(3-\sqrt {15},-3)$ and $F_2(3+\sqrt {15},-3)$ (b) Length of the major axis: $2a=8$ Length of the minor axis: $2b=2$ (c)

Work Step by Step

Equation of an ellipse with center at $(h,k)$ (major axis is horizontal): $\frac{(x-h)^2}{a^2}+\frac{(y-k)^2}{b^2}=1$ $\frac{(x-3)^2}{16}+(y^2+3)=1$ $\frac{(x-3)^2}{4^2}+\frac{[y-(-3)]^2}{1^2}=1$ $h=3$ $k=-3$ Center: $C(3,-3)$ $a=4$ $b=1$ $c^2=a^2-b^2=16-1=15$ $c=\sqrt {15}$ The given equation can be obtained by shifting $\frac{x^2}{4^2}+\frac{y^2}{1^2}=1$ right 3 units and downward 3 units. In this equation: Vertices: $V(±a,0)$ $V_1(-4,0)$ and $V_2(4,0)$ Foci: $F(±c,0)$ $F_1(-\sqrt {15},0)$ and $F_2(\sqrt {15},0)$ Now, shift these points 3 units to the right and 3 units downward: Vertices: $V_1(-1,-3)$ and $V_2(7,-3)$ Foci: $F_1(3-\sqrt {15},-3)$ and $F_2(3+\sqrt {15},-3)$ Length of the major axis: $2a=8$ Length of the minor axis: $2b=2$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.