Precalculus: Mathematics for Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 1305071751
ISBN 13: 978-1-30507-175-9

Chapter 11 - Section 11.4 - Shifted Conics - 11.4 Exercises - Page 814: 10

Answer

(a) Center: $C(-1,-1)$ Vertices: $V_1(0,-9)$ and $V_2(0,7)$ Foci: $F_1(0,-1-2\sqrt 7)$ and $F_2(0,-1-2\sqrt 7)$ (b) Length of the major axis: $2a=16$ Length of the minor axis: $2b=12$ (c)

Work Step by Step

Equation of an ellipse with center at $(h,k)$ (major axis is vertical): $\frac{(x-h)^2}{b^2}+\frac{(y-k)^2}{a^2}=1$ $\frac{(x+1)^2}{36}+\frac{(y+1)^2}{64}=1$ $\frac{[x-(-1)]^2}{6^2}+\frac{[y-(-1)]^2}{8^2}=1$ $h=-1$ $k=-1$ Center: $C(-1,-1)$ $a=8$ $b=6$ $c^2=a^2-b^2=64-36=28$ $c=2\sqrt 7$ The given equation can be obtained by shifting $\frac{x^2}{6^2}+\frac{y^2}{8^2}=1$ left 1 unit and downward 1 unit. In this equation: Vertices: $V(0,±a)$ $V_1(0,-8)$ and $V_2(0,8)$ Foci: $F(0,±c)$ $F_1(0,-2\sqrt 7)$ and $F_2(0,2\sqrt 7)$ Now, shift these points 1 unit to the left and 1 unit downward: Vertices: $V_1(0,-9)$ and $V_2(0,7)$ Foci: $F_1(0,-1-2\sqrt 7)$ and $F_2(0,-1-2\sqrt 7)$ Length of the major axis: $2a=16$ Length of the minor axis: $2b=12$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.