Precalculus: Mathematics for Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 1305071751
ISBN 13: 978-1-30507-175-9

Chapter 11 - Section 11.4 - Shifted Conics - 11.4 Exercises - Page 814: 24

Answer

(a) Center: $C(-3,1)$ $V_1(-3,-4)$ and $V_2(-3,6)$ $F_1(-3,1-\sqrt {26})$ and $F_2(-3,1+\sqrt {26})$ $y=5x+16$ $y=-5x-14$ (b)

Work Step by Step

Equation of a hyperbola with center at $(h,k)$ (transverse axis is vertical): $\frac{(y-k)^2}{a^2}-\frac{(x-h)^2}{b^2}=1$ $\frac{(y-1)^2}{25}-(x+3)^2=1$ $\frac{(y-1)^2}{5^2}-\frac{[x-(-3)]^2}{1^2}=1$ $h=-3$ $k=1$ Center: $C(-3,1)$ $a=5$ $b=1$ $c^2=a^2+b^2=5^2+1^2=25+1=26$ $c=\sqrt {26}$ The given equation can be obtained by shifting $\frac{y^2}{5^2}-\frac{x^2}{1^2}=1$ left 3 units and upward 1 unit. In $\frac{y^2}{5^2}-\frac{x^2}{1^2}=1$: Vertices: $V(0,±a)$ $V_1(0,-5)$ and $V_2(0,5)$ Foci: $F(0,±c)$ $F_1(0,-\sqrt {26})$ and $F_2(0,\sqrt {26})$ Now, shift these points 3 units to the left and 1 unit upward: $V_1(-3,-4)$ and $V_2(-3,6)$ $F_1(-3,1-\sqrt {26})$ and $F_2(-3,1+\sqrt {26})$ Asymptotes: $(y−k)=±\frac{a}{b}(x−h)$ $y-1=±\frac{5}{1}[x-(-3)]$ $y=±5(x+3)+1$ $y=5x+16$ and $y=-5x-14$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.