Calculus: Early Transcendentals 8th Edition

Published by Cengage Learning
ISBN 10: 1285741552
ISBN 13: 978-1-28574-155-0

Chapter 15 - Section 15.3 - Double Integrals in Polar Coordinates - 15.3 Exercise - Page 1015: 38

Answer

The average distance from points in $D $ to the origin is given by: $$ \begin{aligned} f_{\text {ave }} &=\frac{1}{A(D)} \iint_{D} \sqrt{x^{2}+y^{2}} d A \\ &=\frac{2}{3} a. \end{aligned} $$

Work Step by Step

Let $D$ be the disk with center at the origin and radius $a$. The region $D$ can be described as: $$ D=\left\{(r, \theta) | 0 \leq r \leq a, \quad 0 \leq \theta \leq 2\pi \right\} $$ the distance from the point $(x,y)$ to the origin is the function $f(x,y)=\sqrt {x^{2}+y^{2}}$, so the average distance from points in $D $ to the origin is $$ f_{\mathrm{ave}}=\frac{1}{A(D)} \iint_{R} f(x, y) d A $$ where $A(D)=\pi a^{2}$. So, the average value of the given function is given by: $$ \begin{aligned} f_{\text {ave }} &=\frac{1}{A(D)} \iint_{D} \sqrt{x^{2}+y^{2}} d A \\ & =\frac{1}{\pi a^{2}} \int_{0}^{2 \pi} \int_{0}^{a} \sqrt{r^{2}} r d r d \theta \\ &=\frac{1}{\pi a^{2}} \int_{0}^{2 \pi} d \theta \int_{0}^{a} r^{2} d r \\ &=\frac{1}{\pi a^{2}}[\theta]_{0}^{2 \pi}\left[\frac{1}{3} r^{3}\right]_{0}^{a} \\ &=\frac{1}{\pi a^{2}} \cdot 2 \pi \cdot \frac{1}{3} a^{3} \\ &=\frac{2}{3} a. \end{aligned} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.