Calculus: Early Transcendentals 8th Edition

Published by Cengage Learning
ISBN 10: 1285741552
ISBN 13: 978-1-28574-155-0

Chapter 15 - Section 15.3 - Double Integrals in Polar Coordinates - 15.3 Exercise - Page 1015: 37

Answer

The average value of the given function is given by: $$ \begin{aligned} f_{\mathrm{ave}} &=\frac{1}{A(D)} \iint_{D} \frac{1}{\sqrt{x^{2}+y^{2}}} d A \\ &=\frac{2}{a+b}. \end{aligned} $$

Work Step by Step

Find the average value of the function $f(x,y)=\frac{1}{\sqrt {x^{2}+y^{2}}}$ on the annular region $a^{2}\leq x^{2}+y^{2} \leq b^{2},\quad 0 \lt a \lt b . $ The average value of a function $f(x,y)$ of two variables defined on region $D$ is $$ f_{\mathrm{ave}}=\frac{1}{A(D)} \iint_{R} f(x, y) d A $$ Here $$ D=\left\{(r, \theta) | a \leq r \leq b, \quad 0 \leq \theta \leq 2\pi \right\} $$ and hence, $$ A(D)=\pi b^{2}- \pi a^{2}= \pi (b^{2}- a^{2}). $$ So, the average value of the given function is given by: $$ \begin{aligned} f_{\mathrm{ave}} &=\frac{1}{A(D)} \iint_{D} \frac{1}{\sqrt{x^{2}+y^{2}}} d A \\ &=\frac{1}{\pi\left(b^{2}-a^{2}\right)} \int_{0}^{2 \pi} \int_{a}^{b} \frac{1}{\sqrt{r^{2}}} r d r d \theta \\ &=\frac{1}{\pi\left(b^{2}-a^{2}\right)} \int_{0}^{2 \pi} d \theta \int_{a}^{b} d r \\ &=\frac{1}{\pi\left(b^{2}-a^{2}\right)}[\theta]_{0}^{2 \pi}[r]_{a}^{b} \\ & =\frac{1}{\pi\left(b^{2}-a^{2}\right)}(2 \pi)(b-a) \\ &=\frac{2(b-a)}{(b+a)(b-a)} \\ &=\frac{2}{a+b}. \end{aligned} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.