Calculus: Early Transcendentals 8th Edition

Published by Cengage Learning
ISBN 10: 1285741552
ISBN 13: 978-1-28574-155-0

Chapter 15 - Section 15.3 - Double Integrals in Polar Coordinates - 15.3 Exercise - Page 1015: 14

Answer

The area of the region in the first quadrant that lies between the circles $x^{2}+y^{2}=4 $, and $x^{2}+y^{2}=2x $ is given by: $$ \begin{aligned} \iint_{D} x d A &=\iint_{x^{2}+y^{2} \leq 4} x d A-\iint_{y \geq 0} x d A \\ & x \geq 0, y \geq 0 \\ &=\int_{0}^{\pi / 2} \int_{0}^{2} r^{2} \cos \theta d r d \theta-\int_{0}^{\pi / 2} \int_{0}^{2 \cos \theta} r^{2} \cos \theta d r d \theta \\ &=\frac{16-3 \pi}{6}. \end{aligned} $$

Work Step by Step

The region is in the first quadrant and lies between the circles $x^{2}+y^{2}=4 $, and $x^{2}+y^{2}=2x$. In polar coordinates, the region is given by: $$ \begin{aligned} (x)^{2} +y^{2}&=2x \\ & \quad\left[\begin{array}{c}{ \text {since } x^{2} +y^{2} =r^{2}, } \\ { x=r \cos \theta \text { then } }\end{array}\right] \\ & r^{2}= 2r \cos \theta \\ & r= 2 \cos \theta \end{aligned} $$ the region in the first quadrant is given by: $$ D=\left\{(r, \theta) | 0 \leq r \leq 2 \cos \theta , \quad 0 \leq \theta \leq \frac{\pi}{2} \right\} $$ and the circle $$ \begin{aligned} x^{2}+y^{2}&=4 \\ & \quad\left[\begin{array}{c}{ \text {since } x^{2} +y^{2} =r^{2}, } \\ { \text { then } }\end{array}\right] \\ & r^{2}= 4\\ \end{aligned} $$ the region in the first quadrant is given by $$ D=\left\{(r, \theta) | 0 \leq r \leq 2 , \quad 0 \leq \theta \leq \frac{\pi}{2} \right\} $$ Therefore, the area of the region inside the circle $r^{2}= 2 $, and outside the circle $ r= 2 \cos \theta $, in the first quadrant, is given by: $$ \begin{aligned} \iint_{D} x d A &=\iint_{x^{2}+y^{2} \leq 4} x d A-\iint_{y \geq 0} x d A \\ & x \geq 0, y \geq 0 \\ &=\int_{0}^{\pi / 2} \int_{0}^{2} r^{2} \cos \theta d r d \theta-\int_{0}^{\pi / 2} \int_{0}^{2 \cos \theta} r^{2} \cos \theta d r d \theta \\ &=\int_{0}^{\pi / 2} \frac{1}{3}(8 \cos \theta) d \theta-\int_{0}^{\pi / 2} \frac{1}{3}\left(8 \cos ^{4} \theta\right) d \theta \\ &=\frac{8}{3}-\frac{8}{12}\left[\cos ^{3} \theta \sin \theta+\frac{3}{2}(\theta+\sin \theta \cos \theta)\right]_{0}^{\pi / 2} \\ &=\frac{8}{3}-\frac{2}{3}\left[0+\frac{3}{2}\left(\frac{\pi}{2}\right)\right]\\ &=\frac{16-3 \pi}{6}. \end{aligned} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.