Calculus: Early Transcendentals 8th Edition

Published by Cengage Learning
ISBN 10: 1285741552
ISBN 13: 978-1-28574-155-0

Chapter 15 - Section 15.3 - Double Integrals in Polar Coordinates - 15.3 Exercise - Page 1015: 22

Answer

The solid is inside the sphere $x^{2}+y^{2} +z^{2}= 16$ and outside the cylinder $x^{2}+y^{2} = 4$. The volume is $$ \begin{aligned} V& = \iint_{4 \leq x^{2}+y^{2} \leq 16} z d A\\ &=32 \sqrt{3} \pi \end{aligned} $$

Work Step by Step

The solid is inside the sphere $x^{2}+y^{2} +z^{2}= 16$ and outside the cylinder $x^{2}+y^{2} = 4$. If we put $z = 0$ in the equation of the sphere, we get $x^{2}+y^{2} = 16$. This means that the sphere intersects the $xy-$plane in the circle $x^{2}+y^{2} = 4$ , so the volume is $$ \begin{aligned} V& = \iint_{4 \leq x^{2}+y^{2} \leq 16} z d A & \quad\left[\begin{array}{c}{ \text {by symmetry } } \end{array}\right] \\ & =2 \iint_{4 \leq x^{2}+y^{2} \leq 16} \sqrt{16-x^{2}-y^{2}} d A. \end{aligned} $$ In polar coordinates, we have $x^{2}+y^{2}=r^{2} $. Thus, the disk D is given by: $$ D=\left\{(r, \theta) | 2 \leq r \leq 4, \quad 0 \leq \theta \leq 2\pi \right\} $$ and, by Formula 3, we have $$ \begin{aligned} V& = \iint_{4 \leq x^{2}+y^{2} \leq 16} z d A\\ & =2 \iint_{4 \leq x^{2}+y^{2} \leq 16} \sqrt{16-x^{2}-y^{2}} d A\\ & =2 \int_{0}^{2 \pi} \int_{2}^{4} \sqrt{16-r^{2}} r d r d \theta \\ &=2 \int_{0}^{2 \pi} d \theta \int_{2}^{4} r\left(16-r^{2}\right)^{1 / 2} d r\\ & =2[\theta]_{0}^{2 \pi}\left[-\frac{1}{3}\left(16-r^{2}\right)^{3 / 2}\right]_{2}^{4} \\ &=-\frac{2}{3}(2 \pi)\left(0-12^{3 / 2}\right) \\ &=\frac{4 \pi}{3}(12 \sqrt{12}) \\ &=32 \sqrt{3} \pi. \end{aligned} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.