Calculus: Early Transcendentals 8th Edition

Published by Cengage Learning
ISBN 10: 1285741552
ISBN 13: 978-1-28574-155-0

Chapter 15 - Section 15.3 - Double Integrals in Polar Coordinates - 15.3 Exercise - Page 1015: 17

Answer

The area of the region inside the circle $(x-1)^{2}+y^{2}=1 $, and outside the circle $(x-1)^{2}+y^{2}=1 $ is given by: $$ \begin{aligned} 2 A(D) &=2 \iint_{D} d A\\ &=2 \int_{0}^{\pi / 3} \int_{1}^{2 \cos \theta} r d r d \theta \\ &=\frac{\pi}{3}+\frac{\sqrt {3}}{2}. \end{aligned} $$

Work Step by Step

The region is inside the circle $(x-1)^{2}+y^{2}=1 $, and outside the circle $(x-1)^{2}+y^{2}=1 $ In polar coordinates, the circle is $$ \begin{aligned} (x-1)^{2}+y^{2}&=1 \\ (x)^{2} -2x +1+y^{2}&=1 \\ (x)^{2} +y^{2}&=2x \\ & \quad\left[\begin{array}{c}{ \text {since } x^{2} +y^{2} =r^{2}, } \\ { x=r \cos \theta \text { then } }\end{array}\right] \\ & r^{2}= 2r \cos \theta \\ & r= 2 \cos \theta \end{aligned} $$ and the circle $$ \begin{aligned} x^{2}+y^{2}&=1 \\ & \quad\left[\begin{array}{c}{ \text {since } x^{2} +y^{2} =r^{2}, } \\ { \text { then } }\end{array}\right] \\ & r^{2}= 1\\ \end{aligned} $$ The curves intersect in the first quadrant when $$ r= 2 \cos \theta=1 \Rightarrow \cos \theta=\frac{1}{2} \Rightarrow \theta= \frac{\pi}{3} $$ The region in the first quadrant is given by $$ D=\left\{(r, \theta) | 1 \leq r \leq 2 \cos \theta , \quad 0 \leq \theta \leq \frac{\pi}{3} \right\} $$ Therefore, the area of the region inside the circle $r= 2 \cos \theta $, and outside the circle $ r^{2}= 1 $ is given by: $$ \begin{aligned} 2 A(D) &=2 \iint_{D} d A\\ &=2 \int_{0}^{\pi / 3} \int_{1}^{2 \cos \theta} r d r d \theta \\ &=2 \int_{0}^{\pi / 3}\left[\frac{1}{2} r^{2}\right]_{r=1}^{r-2} d \theta \\ &=\int_{0}^{\pi / 3}\left(4 \cos ^{2} \theta-1\right) d \theta \\ &=\int_{0}^{\pi / 3}\left[4 \cdot \frac{1}{2}(1+\cos 2 \theta)-1\right] d \theta \\ &=\int_{0}^{\pi / 3}(1+2 \cos 2 \theta) d \theta \\ &=[\theta+\sin 2 \theta]_{0}^{\pi / 3} \\ &=\frac{\pi}{3}+\frac{\sqrt {3}}{2}. \end{aligned} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.