Calculus: Early Transcendentals 8th Edition

Published by Cengage Learning
ISBN 10: 1285741552
ISBN 13: 978-1-28574-155-0

Chapter 15 - Section 15.3 - Double Integrals in Polar Coordinates - 15.3 Exercise - Page 1015: 20

Answer

$$V=\frac{14}{3} \pi$$

Work Step by Step

The solid lies below the cone $z= \sqrt {x^{2}+y^{2}}$ and above the ring $1\leq x^{2}+y^{2} \leq4$. In polar coordinates, we have $x^{2}+y^{2} $ and $x=r \cos \theta$. Thus, the disk D is given by: $$ D=\left\{(r, \theta) | 1 \leq r \leq 2, \quad 0 \leq \theta \leq 2\pi \right\} $$ and, the volume of the given solid is given by: $$ \begin{aligned} V&=\iint_{x^{2}+y^{2} \leq 4} \sqrt{x^{2}+y^{2}} d A \\ &=\int_{0}^{2 \pi} \int_{1}^{2} \sqrt{r^{2}} r d r d \theta \\ &=\int_{0}^{2 \pi} d \theta \int_{1}^{2} r^{2} d r \\ &=[\theta]_{0}^{2 \pi}\left[\frac{1}{3} r^{3}\right]_{1}^{2} \\ &=2 \pi\left(\frac{8}{3}-\frac{1}{3}\right) \\ &=\frac{14}{3} \pi. \end{aligned} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.