Calculus: Early Transcendentals 8th Edition

Published by Cengage Learning
ISBN 10: 1285741552
ISBN 13: 978-1-28574-155-0

Chapter 15 - Section 15.3 - Double Integrals in Polar Coordinates - 15.3 Exercise - Page 1015: 16

Answer

The required area is equal to $\frac{3 \pi}{2}-4$

Work Step by Step

The area of the region D in the first quadrant enclosed by the cardiod is given by: $$ D=\left\{(r, \theta) | \quad 0 \leq r \leq 1- cos \theta , \quad 0 \leq \theta \leq \frac{\pi}{2} \right\} $$ By symmetry, the area of the region is 4 times the area of the region D Therefore, the area of enclosed by both of the cardioids $r=1+\cos \theta $, and $r=1+\cos \theta $ is given by: $$ \begin{aligned} 4 A(D) &=4 \iint_{D} d A=4 \int_{0}^{\pi / 2} \int_{0}^{1-\cos \theta} r d r d \theta \\ &=4 \int_{0}^{\pi / 2}\left[\frac{1}{2} r^{2}\right]_{r=0}^{r=1-\cos \theta} d \theta \\ &=2 \int_{0}^{\pi / 2}(1-\cos \theta)^{2} d \theta \\ &=2 \int_{0}^{\pi / 2}\left(1-2 \cos \theta+\cos ^{2} \theta\right) d \theta \\ &=2 \int_{0}^{\pi / 2}\left[1-2 \cos \theta+\frac{1}{2}(1+\cos 2 \theta)\right] d \theta \\ &=2\left[\theta-2 \sin \theta+\frac{1}{2} \theta+\frac{1}{4} \sin 2 \theta\right]_{0}^{\pi / 2} \\ &=2\left(\frac{\pi}{2}-2+\frac{\pi}{4}\right) \\ &=\frac{3 \pi}{2}-4 \end{aligned} $$ So, the required area is equal to $\frac{3 \pi}{2}-4$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.