Calculus: Early Transcendentals 8th Edition

Published by Cengage Learning
ISBN 10: 1285741552
ISBN 13: 978-1-28574-155-0

Chapter 15 - Section 15.3 - Double Integrals in Polar Coordinates - 15.3 Exercise - Page 1015: 34

Answer

$$ \iint_{D} x y \sqrt{1+x^{2}+y^{2}} d A $$ where $D$ is the portion of the disk $x^{2}+y^{2}\leq 1 $ that lies in the first quadrant. The required integral is given by: $$ \begin{aligned} & \iint_{D} x y \sqrt{1+x^{2}+y^{2}} d A \approx 0.1609 \end{aligned} $$

Work Step by Step

$$ \iint_{D} x y \sqrt{1+x^{2}+y^{2}} d A $$ where $D$ is the portion of the disk $x^{2}+y^{2}\leq 1 $ that lies in the first quadrant. The region $D$ can be described as: $$ D=\left\{(x, y ) | \quad x \geq 0,\, y \geq 0 , \quad x^{2}+y^{2}\leq 1 \right\} $$ In polar coordinates, we have $x^{2}+y^{2}=r^{2} $, $ x=r \cos \theta ,\,\, y= r \sin \theta $ Thus the disk D is given by: $$ D=\left\{(r, \theta) | 0 \leq r \leq 1, \quad 0 \leq \theta \leq \frac{\pi}{2} \right\} $$ and the required integral is given by: $$ \begin{aligned} & \iint_{D} x y \sqrt{1+x^{2}+y^{2}} d A=\\ &= \int_{0}^{\pi / 2} \int_{0}^{1}(r \cos \theta)(r \sin \theta) \sqrt{1+r^{2}} r d r d \theta \\ &=\int_{0}^{\pi / 2} \sin \theta \cos \theta d \theta \int_{0}^{1} r^{3} \sqrt{1+r^{2}} d r\\ &=\left[\frac{1}{2} \sin ^{2} \theta\right]_{0}^{\pi / 2} \int_{0}^{1} r^{3} \sqrt{1+r^{2}} d r \\ &=\frac{1}{2} \int_{0}^{1} r^{3} \sqrt{1+r^{2}} d r \\ &\approx 0.1609 \end{aligned} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.