Calculus: Early Transcendentals 8th Edition

Published by Cengage Learning
ISBN 10: 1285741552
ISBN 13: 978-1-28574-155-0

Chapter 15 - Section 15.3 - Double Integrals in Polar Coordinates - 15.3 Exercise - Page 1015: 15

Answer

The area of one loop of the rose is equal to $\frac{\pi}{12}$

Work Step by Step

One loop of the rose $r=\cos 3\theta $, it is given by: $$ D=\left\{(r, \theta) | 0 \leq r \leq cos 3\theta , \quad -\frac{\pi}{6} \leq \theta \leq \frac{\pi}{6} \right\} $$ Therefore, the area of one loop of the rose is given by $$ \begin{aligned} \iint_{D} d A &=\int_{-x / 6}^{\pi / 6} \int_{0}^{\cos 3 \theta} r d r d \theta \\ &=\int_{-\pi / 6}^{\pi / 6}\left[\frac{1}{2} r^{2}\right]_{r=0}^{r=\cos 3 \theta} d \theta \\ &=\int_{-\pi / 6}^{\pi / 6} \frac{1}{2} \cos ^{2} 3 \theta d \theta \\ &=2 \int_{0}^{\pi / 6} \frac{1}{2}\left(\frac{1+\cos 6 \theta}{2}\right) d \theta \\ &=\frac{1}{2}\left[\theta+\frac{1}{6} \sin 6 \theta\right]_{0}^{\pi / 6} \\ &=\frac{\pi}{12}. \end{aligned} $$ So, the area of one loop of the rose is equal to $\frac{\pi}{12}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.