Calculus: Early Transcendentals 8th Edition

Published by Cengage Learning
ISBN 10: 1285741552
ISBN 13: 978-1-28574-155-0

Chapter 15 - Section 15.3 - Double Integrals in Polar Coordinates - 15.3 Exercise - Page 1015: 23

Answer

$$V =\frac{4 \pi}{3} a^{3}$$

Work Step by Step

The solid is inside the sphere of radius a, $x^{2}+y^{2} +z^{2}= a^{2}$ If we put $z = 0$ in the equation of the sphere, we get $x^{2}+y^{2} = a^{2} $. This means that the sphere intersects the $xy-$plane in the circle $x^{2}+y^{2} = a^{2}$, so the volume is $$ \begin{aligned} V& = \iint_{x^{2}+y^{2} \leq a^{2}} z d A & \quad\left[\begin{array}{c}{ \text {by symmetry } } \end{array}\right] \\ & =2 \iint_{x^{2}+y^{2} \leq a^{2}} \sqrt{a^{2}-x^{2}-y^{2}} d A \end{aligned} $$ In polar coordinates, we have $x^{2}+y^{2}=r^{2} $. Thus, the disk D is given by: $$ D=\left\{(r, \theta) | 0 \leq r \leq a, \quad 0 \leq \theta \leq 2\pi \right\} $$ and, the required volume is given by: $$ \begin{aligned} V &=2 \iint_{x^{2}+y^{2} \leq a^{2}} \sqrt{a^{2}-x^{2}-y^{2}} d A \\ &=2 \int_{0}^{2 \pi} \int_{0}^{a} \sqrt{a^{2}-r^{2}} r d r d \theta \\ &=2 \int_{0}^{2 \pi} d \theta \int_{0}^{a} r \sqrt{a^{2}-r^{2}} d r \\ &=2[\theta]_{0}^{2 \pi}\left[-\frac{1}{3}\left(a^{2}-r^{2}\right)^{3 / 2}\right]_{0}^{a} \\ & =2(2 \pi)\left(0+\frac{1}{3} a^{3}\right)\\ &=\frac{4 \pi}{3} a^{3}. \end{aligned} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.