Calculus: Early Transcendentals 8th Edition

Published by Cengage Learning
ISBN 10: 1285741552
ISBN 13: 978-1-28574-155-0

Chapter 15 - Section 15.3 - Double Integrals in Polar Coordinates - 15.3 Exercise - Page 1015: 24

Answer

$$V=\frac{9}{4} \pi$$

Work Step by Step

The solid is bounded by the paraboloid $z=1 +2x^{2}+2y^{2}$. If we put $z = 7$ in the equation of the paraboloid, we get $2x^{2}+2y^{2} = 6 \text { or } x^{2}+y^{2} = 3 $. This means that the $xy-$plane intersects the paraboloid in the circle $x^{2}+y^{2} = 3 $ in the first octant, so the volume is $$ \begin{aligned} V& =\iint_{x^{2}+y^{2} \leq 3 ,\, x\geq 0 ,\, y\geq 0}\left[7-\left(1+2 x^{2}+2 y^{2}\right)\right] d A\\ \end{aligned} $$ In polar coordinates, we have $x^{2}+y^{2}=r^{2} $; thus the disk D is given by: $$ D=\left\{(r, \theta) | 0 \leq r \leq \sqrt {3}, \quad 0 \leq \theta \leq \frac{\pi }{2}\right\} $$ and, the required volume is given by: $$ V =\iint_{x^{2}+y^{2} \leq 3 ,\, x\geq 0 ,\, y\geq 0}\left[7-\left(1+2 x^{2}+2 y^{2}\right)\right] d A \\ =\int_{0}^{\pi / 2} \int_{0}^{\sqrt{3}}\left[7-\left(1+2 r^{2}\right)\right] r d r d \theta\\ =\int_{0}^{\pi / 2} d \theta \int_{0}^{\sqrt{3}}\left(6 r-2 r^{3}\right) d r \\ =[\theta]_{0}^{\pi / 2}\left[3 r^{2}-\frac{1}{2} r^{4}\right]_{0}^{\sqrt{3} }\\ =\frac{\pi}{2} \cdot \frac{9}{2}\\ =\frac{9}{4} \pi. $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.