Calculus: Early Transcendentals 8th Edition

Published by Cengage Learning
ISBN 10: 1285741552
ISBN 13: 978-1-28574-155-0

Chapter 15 - Section 15.3 - Double Integrals in Polar Coordinates - 15.3 Exercise - Page 1015: 27

Answer

The solid is inside both the cylinder $x^{2}+y^{2} =4$ and the ellipsoid $4x^{2}+4y^{2} + z^{2} = 64 $ The required volume is given by: $$ \begin{aligned} V &=\iint_{x^{2}+y^{2} \leq 4}[\sqrt{64-4 x^{2}-4 y^{2}}-(-\sqrt{64-4 x^{2}-4 y^{2}})] d A \\ &=\frac{8 \pi}{3}(64-24 \sqrt{3}) \end{aligned} $$

Work Step by Step

The solid is inside both the cylinder $x^{2}+y^{2} =4$ and the ellipsoid $4x^{2}+4y^{2} + z^{2} = 64 $, i.e. between the surfaces $z = \sqrt { 64 -4x^{2}+4y^{2}} $ and $z = -\sqrt { 64 -4x^{2}+4y^{2}}. $ So the volume is $$ \begin{aligned} V& =\iint_{D}(Z_{1}-Z_{2}) d A\\ &=\iint_{x^{2}+y^{2} \leq 4}\left(\sqrt { 64 -4x^{2}+4y^{2}} -(-\sqrt { 64 -4x^{2}+4y^{2}}) \right) d A\\ \end{aligned} $$ In polar coordinates, we have $x^{2}+y^{2}=r^{2} $; thus the disk D is given by: $$ D=\left\{(r, \theta) | 0 \leq r \leq 2, \quad 0 \leq \theta \leq 2\pi \right\} $$ and, the required volume is given by: $$ \begin{aligned} V &=\iint_{x^{2}+y^{2} \leq 4}[\sqrt{64-4 x^{2}-4 y^{2}}-(-\sqrt{64-4 x^{2}-4 y^{2}})] d A \\ &=\iint_{x^{2}+y^{2} \leq 4} 2 \sqrt{64-4 x^{2}-4 y^{2}} d A \\ &=4 \int_{0}^{2 \pi} \int_{0}^{2} \sqrt{16-r^{2}} r d r d \theta \\ &=4 \int_{0}^{2 \pi} d \theta \int_{0}^{2} r \sqrt{16-r^{2}} d r \\ &=4[\theta]_{0}^{2 \pi}\left[-\frac{1}{3}\left(16-r^{2}\right)^{3 / 2}\right]_{0}^{2} \\ &=8 \pi\left(-\frac{1}{3}\right)\left(12^{3 / 2}-16^{2 / 3}\right) \\ &=\frac{8 \pi}{3}(64-24 \sqrt{3}) \end{aligned} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.