Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 5 - The Integral - Chapter Review Exercises - Page 278: 15

Answer

$\int_{4}^{9}\sqrt xdx=\frac{38}{3}$

Work Step by Step

$$\lim\limits_{N\to \infty}\frac{5}{N}\sum_{j=1}^{N}\sqrt {4+5\frac{j}{N}}$$ $$\lim\limits_{N\to \infty}\sum_{j=1}^{N}\sqrt {4+5\frac{j}{N}}\cdot \frac{5}{N}$$ $$\lim\limits_{N\to \infty}\sum_{j=1}^{N}\sqrt {4+j\frac{5}{N}}\cdot \frac{5}{N}$$ $$\lim\limits_{N\to \infty}\sum_{j=1}^{N}\sqrt {4+j\frac{9-4}{N}}\cdot \frac{9-4}{N}$$ Where $x_j=4+j\frac{9-4}{N}$,$f(x)=\sqrt x$,$a=4$,$b=9$ $$\lim\limits_{N\to \infty}\sum_{j=1}^{N}\sqrt {4+j\frac{9-4}{N}}\cdot \frac{9-4}{N}=\int_{4}^{9}\sqrt xdx$$ Using the $FTC I$ it follows: $$\int_{4}^{9}\sqrt xdx=[\frac{2}{3}x^{\frac{3}{2}}]_{4}^{9}=\frac{2}{3}\cdot 9^{\frac{3}{2}}-\frac{2}{3}\cdot 4^{\frac{3}{2}}=\frac{38}{3}$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.