Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 5 - The Integral - Chapter Review Exercises - Page 278: 13

Answer

$\int_{\frac{\pi}{3}}^{\frac{\pi}{2}}\sin(x)dx=\frac{1}{2}$

Work Step by Step

$$\lim\limits_{N \to \infty}\frac{\pi}{6N}\sum_{j=1}^{N}\sin(\frac{\pi}{3}+\frac{\pi j}{6N})$$ $$\lim\limits_{N \to \infty}\sum_{j=1}^{N}\sin(\frac{\pi}{3}+\frac{\pi j}{6N})\cdot \frac{\pi}{6N}$$ $$\lim\limits_{N \to \infty}\sum_{j=1}^{N}\sin(\frac{\pi}{3}+j\frac{\frac{\pi}{2}-\frac{\pi}{3}}{N})\cdot \frac{\frac{\pi}{2}-\frac{\pi}{3}}{N}$$ where $x_j=\frac{\pi}{3}+j\frac{\frac{\pi}{2}-\frac{\pi}{3}}{N}$ ,$\Delta x=\frac{\frac{\pi}{2}-\frac{\pi}{3}}{N}$,$a=\frac{\pi}{3}$,$b=\frac{\pi}{2}, $and $f(x)=\sin(x)$ so: $$\lim\limits_{N \to \infty}\sum_{j=1}^{N}\sin(\frac{\pi}{3}+j\frac{\frac{\pi}{2}-\frac{\pi}{3}}{N})\cdot \frac{\frac{\pi}{2}-\frac{\pi}{3}}{N}=\int_{\frac{\pi}{3}}^{\frac{\pi}{2}}\sin(x)dx$$ Using the $FTC I$ it follows: $$\int_{\frac{\pi}{3}}^{\frac{\pi}{2}}\sin(x)dx=[-\cos(x)]_{\frac{\pi}{3}}^{\frac{\pi}{2}}=-\cos(\frac{\pi}{2})-(-\cos(\frac{\pi}{3}))=\frac{1}{2}$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.