Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 8 - Integration Techniques, L'Hopital's Rule, and Improper Integrals - 8.7 Exercises - Page 564: 51

Answer

$$e$$

Work Step by Step

$$\eqalign{ & \mathop {\lim }\limits_{x \to {0^ + }} {\left( {1 + x} \right)^{1/x}} \cr & {\text{Evaluating the limit}} \cr & \mathop {\lim }\limits_{x \to {0^ + }} {\left( {1 + x} \right)^{1/x}} = {\left( {1 + {0^ + }} \right)^{1/{0^ + }}} = {1^\infty } \cr & {\text{This limit has the form }}{1^\infty }{\text{ }} \cr & {\left( {1 + x} \right)^{1/x}} = {e^{\frac{1}{x}\ln \left( {1 + x} \right)}},{\text{ then}} \cr & \mathop {\lim }\limits_{x \to {0^ + }} {\left( {1 + x} \right)^{1/x}} = \mathop {\lim }\limits_{x \to {0^ + }} {e^{\frac{1}{x}\ln \left( {1 + x} \right)}} = {e^{\mathop {\lim }\limits_{x \to {0^ + }} \frac{1}{x}\ln \left( {1 + x} \right)}} \cr & {\text{The first step is to evaluate }} \cr & L = \mathop {\lim }\limits_{x \to {0^ + }} \frac{1}{x}\ln \left( {1 + x} \right) = \mathop {\lim }\limits_{x \to {0^ + }} \frac{{\ln \left( {1 + x} \right)}}{x} = \frac{0}{0} \cr & {\text{Using the L'Hopital's rule}} \cr & L = \mathop {\lim }\limits_{x \to {0^ + }} \frac{{\frac{d}{{dx}}\left[ {\ln \left( {1 + x} \right)} \right]}}{{\frac{d}{{dx}}\left[ x \right]}} = \mathop {\lim }\limits_{x \to {0^ + }} \frac{{\frac{1}{{1 + x}}}}{1} = \mathop {\lim }\limits_{x \to {0^ + }} \frac{1}{{1 + x}} \cr & = \frac{1}{{1 + {0^ + }}} = 1 \cr & {\text{Therefore,}} \cr & \mathop {\lim }\limits_{x \to {0^ + }} {\left( {1 + x} \right)^{1/x}} = \mathop {\lim }\limits_{x \to {0^ + }} {e^{\frac{1}{x}\ln \left( {1 + x} \right)}} = {e^1} \cr & \mathop {\lim }\limits_{x \to {0^ + }} {\left( {1 + x} \right)^{1/x}} = e \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.