Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 8 - Integration Techniques, L'Hopital's Rule, and Improper Integrals - 8.7 Exercises - Page 564: 44

Answer

$$0$$

Work Step by Step

$$\eqalign{ & \mathop {\lim }\limits_{x \to {0^ + }} {x^3}\cot x \cr & {\text{Rewrite using the reciprocal identity }}\cot x = \frac{1}{{\tan x}} \cr & = \mathop {\lim }\limits_{x \to {0^ + }} {x^3}\left( {\frac{1}{{\tan x}}} \right) \cr & = \mathop {\lim }\limits_{x \to {0^ + }} \left( {\frac{{{x^3}}}{{\tan x}}} \right) \cr & {\text{Evaluate the limit}} \cr & = \frac{{{{\left( {{0^ + }} \right)}^3}}}{{\tan \left( {{0^ + }} \right)}} = \frac{0}{0}{\text{ Ind}} \cr & {\text{Apply L'Hopital's Rule}} \cr & \mathop {\lim }\limits_{x \to {0^ + }} \left( {\frac{{{x^3}}}{{\tan x}}} \right) = \mathop {\lim }\limits_{x \to {0^ + }} \frac{{\frac{d}{{dx}}\left[ {{x^3}} \right]}}{{\frac{d}{{dx}}\left[ {\tan x} \right]}} \cr & = \mathop {\lim }\limits_{x \to {0^ + }} \frac{{3{x^2}}}{{{{\sec }^2}x}} \cr & {\text{Evaluate the limit}} \cr & = \frac{{3{{\left( 0 \right)}^2}}}{{{{\sec }^2}\left( {{0^ + }} \right)}} = \frac{0}{1} = 0 \cr & {\text{Therefore,}} \cr & \mathop {\lim }\limits_{x \to {0^ + }} {x^3}\cot x = 0 \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.