Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 5 - Logarithmic, Exponential, and Other Transcendental Functions - 5.8 Exercises - Page 391: 91

Answer

$$A = 8\arctan {e^2} - 2\pi $$

Work Step by Step

$$\eqalign{ & y = \operatorname{sech} \frac{x}{2} \cr & {\text{The area of the region is given by }} \cr & A = \int_a^b {\left( {f\left( x \right) - g\left( x \right)} \right)} dx,{\text{ }}f\left( x \right) \geqslant g\left( x \right){\text{ on }}\left[ {a,b} \right],{\text{ then}} \cr & A = \int_{ - 4}^4 {\left( {\operatorname{sech} \frac{x}{2}} \right)} dx \cr & A = \int_{ - 4}^4 {\operatorname{sech} \left( {\frac{x}{2}} \right)} dx \cr & {\text{By definition sech}}u = \frac{2}{{{e^u} + {e^{ - u}}}} \cr & A = \int_{ - 4}^4 {\frac{2}{{{e^{x/2}} + {e^{ - x/2}}}}} dx \cr & {\text{Multiply numerator and denominator by }}{e^{x/2}} \cr & A = 2\int_{ - 4}^4 {\frac{{{e^{x/2}}}}{{{{\left( {{e^{x/2}}} \right)}^2} + 1}}} dx \cr & {\text{By the property of even integrals}} \cr & A = 4\int_0^4 {\frac{{{e^{x/2}}}}{{{{\left( {{e^{x/2}}} \right)}^2} + 1}}} dx \cr & A = 8\int_0^4 {\frac{{\left( {1/2} \right){e^{x/2}}}}{{{{\left( {{e^{x/2}}} \right)}^2} + 1}}} dx \cr & {\text{Integrate }} \cr & A = 8\left[ {\arctan {e^{x/2}}} \right]_0^4 \cr & A = 8\left[ {\arctan {e^{4/2}} - \arctan {e^{0/2}}} \right] \cr & A = 8\left[ {\arctan {e^2} - \arctan 1} \right] \cr & A = 8\left[ {\arctan {e^2} - \frac{\pi }{4}} \right] \cr & A = 8\arctan {e^2} - 2\pi \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.