Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 5 - Logarithmic, Exponential, and Other Transcendental Functions - 5.8 Exercises - Page 391: 73

Answer

$$\frac{{dy}}{{dx}} = 2{\sinh ^{ - 1}}\left( {2x} \right)$$

Work Step by Step

$$\eqalign{ & y = 2x{\sinh ^{ - 1}}\left( {2x} \right) - \sqrt {1 + 4{x^2}} \cr & {\text{Differentiate both sides}} \cr & \frac{{dy}}{{dx}} = \frac{d}{{dx}}\left[ {2x{{\sinh }^{ - 1}}\left( {2x} \right)} \right] - \frac{d}{{dx}}\left[ {\sqrt {1 + 4{x^2}} } \right] \cr & {\text{Use product rule}} \cr & \frac{{dy}}{{dx}} = 2x\frac{d}{{dx}}\left[ {{{\sinh }^{ - 1}}\left( {2x} \right)} \right] + 2{\sinh ^{ - 1}}\left( {2x} \right)\frac{d}{{dx}}\left[ x \right] - \frac{d}{{dx}}\left[ {\sqrt {1 + 4{x^2}} } \right] \cr & {\text{Use Theorem 5}}{\text{.20 }}\frac{d}{{dx}}\left[ {{{\sinh }^{ - 1}}u} \right] = \frac{{u'}}{{\sqrt {{u^2} + 1} }} \cr & \frac{{dy}}{{dx}} = 2x\left( {\frac{2}{{\sqrt {{{\left( {2x} \right)}^2} + 1} }}} \right) + 2{\sinh ^{ - 1}}\left( {2x} \right)\left( 1 \right) - \frac{{8x}}{{2\sqrt {1 + 4{x^2}} }} \cr & {\text{Simplifying}} \cr & \frac{{dy}}{{dx}} = \frac{{4x}}{{\sqrt {4{x^2} + 1} }} + 2{\sinh ^{ - 1}}\left( {2x} \right) - \frac{{4x}}{{2\sqrt {1 - 4{x^2}} }} \cr & \frac{{dy}}{{dx}} = 2{\sinh ^{ - 1}}\left( {2x} \right) \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.