Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 5 - Logarithmic, Exponential, and Other Transcendental Functions - 5.8 Exercises - Page 391: 69

Answer

$$\frac{{dy}}{{dx}} = \sec x$$

Work Step by Step

$$\eqalign{ & y = {\sinh ^{ - 1}}\left( {\tan x} \right) \cr & {\text{Differentiate both sides}} \cr & \frac{{dy}}{{dx}} = \frac{d}{{dx}}\left[ {{{\sinh }^{ - 1}}\left( {\tan x} \right)} \right] \cr & {\text{Use Theorem 5}}{\text{.20 }}\frac{d}{{dx}}\left[ {{{\sinh }^{ - 1}}u} \right] = \frac{{u'}}{{\sqrt {{u^2} + 1} }} \cr & \frac{{dy}}{{dx}} = \frac{{\frac{d}{{dx}}\left[ {\tan x} \right]}}{{\sqrt {{{\left( {\tan x} \right)}^2} + 1} }} \cr & {\text{Computing derivatives}} \cr & \frac{{dy}}{{dx}} = \frac{{{{\sec }^2}x}}{{\sqrt {{{\tan }^2}x + 1} }} \cr & {\text{Using the identity ta}}{{\text{n}}^2}x + 1 = {\sec ^2}x \cr & \frac{{dy}}{{dx}} = \frac{{{{\sec }^2}x}}{{\sqrt {{{\sec }^2}x} }} \cr & {\text{Simplifying}} \cr & \frac{{dy}}{{dx}} = \frac{{{{\sec }^2}x}}{{\sec x}} \cr & \frac{{dy}}{{dx}} = \sec x \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.