Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 5 - Logarithmic, Exponential, and Other Transcendental Functions - 5.8 Exercises - Page 391: 75

Answer

$$ = \frac{1}{{6\sqrt 3 }}\ln \left| {\frac{{\sqrt 3 + 3x}}{{\sqrt 3 - 3x}}} \right| + C$$

Work Step by Step

$$\eqalign{ & \int {\frac{1}{{3 - 9{x^2}}}} dx{\text{ can be written as}} \cr & = \int {\frac{1}{{3 - {{\left( {3x} \right)}^2}}}} dx \cr & {\text{Let }}u = 3x,{\text{ }}du = 3dx,{\text{ }}dx = \frac{1}{3}du \cr & {\text{Substituting}} \cr & \int {\frac{1}{{3 - {{\left( {3x} \right)}^2}}}} dx = \int {\frac{1}{{3 - {u^2}}}\left( {\frac{1}{3}} \right)du} \cr & = \frac{1}{3}\int {\frac{1}{{{{\left( {\sqrt 3 } \right)}^2} - {u^2}}}du} \cr & {\text{Use Theorem 5}}{\text{.20 }}\int {\frac{{du}}{{{a^2} - {u^2}}} = \frac{1}{{2a}}\ln \left| {\frac{{a + u}}{{a - u}}} \right| + } C \cr & = \frac{1}{3}\left( {\frac{1}{{2\left( {\sqrt 3 } \right)}}\ln \left| {\frac{{\sqrt 3 + u}}{{\sqrt 3 - u}}} \right|} \right) + C \cr & = \frac{1}{{6\sqrt 3 }}\ln \left| {\frac{{\sqrt 3 + u}}{{\sqrt 3 - u}}} \right| + C \cr & {\text{Write in terms of }}x \cr & = \frac{1}{{6\sqrt 3 }}\ln \left| {\frac{{\sqrt 3 + 3x}}{{\sqrt 3 - 3x}}} \right| + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.